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A Data Appendix

A.1 Data Sources and Variable Definitions

� Plant-level data: Our plant data is India’s Annual Survey of Industries (ASI), published by the Central
Statistics Office, Ministry of Statistics and Program Implementation. The data is at annual frequency,
each reporting year starts on April 1st and ends on March 31st. Our data covers the years 2000/01
to 2012/13. The input and output product codes for 2008/09 and 2009/10 are different from the ones
for earlier years; we created a concordance using the product names (which often match perfectly),
and concord the few remaining ones by hand. The years 2010/11 to 2012/13 use the NPCMS product
classification, which we convert to ASIC 2007/08 product codes using the concordance published by
the Ministry.

� Total cost: Sum of the user cost of capital, the total wage bill, energy, services, and materials inputs.
Total cost is set to be missing if and only if the user cost of capital, the wage bill, or total materials
are missing. The user cost of capital is constructed using the perpetual inventory method as in the
Appendix of Greenstreet (2007), using depreciation rates of 0%, 5%, 10%, 20%, and 40% for land,
buildings, machinery, transportation equipment, and computers & software, respectively. Capital
deflators are from the Ministry’s wholesale price index, and the nominal interest rate is the India
Bank Lending Rate, from the IMF’s International Financial Statistics (on average about 11%).

� Materials expenditure in total cost: (as used in Table I and subsequent tables) Total expenditure on
intermediate inputs which are associated with a product code (that excludes services and most energy
inputs) divided by total cost (see above).

� Pending High Court cases: From Daksh India (www.dakshindia.org). Daksh collects and updates
pending cases by scraping High Court websites. Cases were retrieved on 11 June 2017. To eliminate
biases resulting from possible delays in the digitization, we exclude all cases that were filed after
1/1/2017. We divide cases into civil and criminal based on state-specific case type codes (which are
part of the case identifiers), and a correspondence between case types and whether they are civil or
criminal cases (from High Courts, where available).

� Rauch classification of goods: From James Rauch’s website, for 5-digit SITC codes. Concorded from
SITC codes to ASIC via the SITC-CPC concordance from UNSTATS, and the NPCMS-ASIC concor-
dance from the Indian Ministry of Statistics (NPCMS is based on CPC codes).

� Dependence on relationship-specific inputs, by industry: (as used in Table I) Following Nunn (2007):
total expenditure of single-product plants in an industry on relationship-specific inputs (according to
the concorded Rauch classification), by 3-digit industry, divided by total expenditures on intermediate
inputs that are associated with a 5-digit product code (which excludes services and most energy
intermediate inputs).

� Gross domestic product per capita, by district: District domestic product was assembled from various
state government reports, for the year 2005 (to maximize coverage). Missing for Goa and Gujarat
and some union territories, and for some individual districts in the other states. Population data from
the 2001 and 2011 Census of India, interpolated to 2005 assuming a constant population growth rate
in each district. Whenever district domestic product per capita was unavailable, we used gross state
domestic product per capita, as reported by the Ministry of Statistics and Program Implementation.

� Vertical Span: See Appendix B. Due to the change in product classification from ASIC to NPCMS
after 2010, we construct vertical distance only using the pre-2011 years.

� Trust: Fraction of respondents that answer “Most people can be trusted” in the World Value Survey’s
trust question: “Generally speaking, would you say that most people can be trusted or that you need
to be very careful in dealing with people?” Data from waves 4, 5, and 6 of the World Values Survey,
except for Himachal Pradesh, Puducherry, and Uttarakhand, which are only available in wave 6. Data
is missing for Goa and the UT’s, except for Delhi and Puducherry.
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� Language: Data on population by mother tongue in each state, from the 2001 Census of India, as
published by the Office of the Registrar General and Census Commissioner.

� Caste: Data on caste from the 2014 round of CMIE’s Consumer Pyramids Survey (as made available
by ICPSR), covering all states of India except the northeastern states and the UT’s of Andaman
and Nicobar, Lakshadweep, Dadra and Nagar Haveli and Daman and Diu. Observations have been
weighted to be representative at the level of a “homogeneous region”, which is “a set of neighbouring
districts that have similar agro-climatic conditions, urbanisation levels and female literacy” (CPS 2014
User guide). Data covers 364 castes and caste categories. Herfindahls are constructed at the level of
a homogeneous region, and mapped to districts.1

� Corruption: Number of self-reported bribes per 1,000 inhabitants. Data on bribes is the full history
of 35,391 self-reported bribes paid from IPaidABribe.com (as of 03/28/2018), which we aggregate at
the state level. Population by state is from the 2011 Census of India.

� Capital Intensity: Average plant-level cost share of capital inputs (user cost of capital, see above), by
5-digit industry.

� Wage Premium: Average plant-level wage bill divided by the total number of man-days worked, by
5-digit industry.

� Contract Labor Share: Average plant-level cost share of contract (non-permanent) workers in the total
wage bill, by 5-digit industry.

� Upstreamness: Upstreamness as defined by Antràs et al. (2012) of 3-digit industries, calculated by year
and averaged across years. Some goods show up mostly as inputs and not as outputs because as outputs
they fall outside of the scope of the ASI (chiefly agricultural and mining goods); for these inputs total
observed intermediate consumption exceeds total observed production by plants in our sample. We set
total production of these goods equal to total intermediate consumption (hence assuming zero sales
to final goods consumers).2 The resulting variable looks very similar to those constructed by Antràs
et al. (2012) for industrialized countries.

� Tradability: Weighted average freight rates of industry’s inputs, by 5-digit industry (using only single-
product plants). Freight rates are the “average trade-weighted freight rates” by 2-digit SITC codes,
from Hummels (1999), concorded to ASIC codes using the SITC-ASIC concordance that we used for
the Rauch classification as well.

� Household consumption shares HHω: Define total net production as the total production of ω (from
the ASI, pooled across all years within each state, with each plant-year observation weighted by the
inverse of the number of times the plant shows up in the ASI), minus the total consumption of ω as
intermediate inputs by ASI firms (constructed and weighted analogously). If total net production of a
good is negative, we set it equal to zero. The value of HHω is then the fraction of total net production
of ω is the sum of total net production of all goods ω′ ∈ Ω.

� Recipe revenue shares Rωρ: Share of sales of ω using recipe ρ in total sales of ω. The sales of ω using ρ
of a single-product plant j are the sales of ω by j multiplied by the probability that j produces using ρ
(equation (3)). To construct the sales of ω using ρ of a multi-product plant j, we choose plant-specific
recipe shares to minimize the Euclidean distance of the plant’s vector of observed cost shares from
the weighted average of the recipes’ mean cost shares mρω, where the weights are the plant-specific
recipe shares (subject to the constraint that weights have to sum up to one for each product ω). To
construct Rωρ, we weigh all plant-year observations by the inverse of the number of times the plant
shows up in the ASI, pooling across all states and years.

1We are grateful to Renuka Sané and CMIE for helping us get a description of the homogeneous regions.
2While this may make these goods look more upstream than they actually are, the biases incurred are likely to be

small: minerals are usually not directly sold to households; agricultural goods are either very upstream in the value
chain of processed foods, or directly sold to households, but do not appear “in the middle” of the value chain.
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A.2 Sample

For the linear regressions in Section 2, the sample consists of all plants that are reported as operating,
produce a single 5-digit product, and have materials shares in sales strictly between zero and two. We also
drop the few observations from Sikkim and the Seven Sister States in North East India (Assam, Meghalaya,
Manipur, Mizoram, Nagaland, and Tripura; Arunachal Pradesh is not covered by the ASI) because they
have a different sampling methodology in the ASI, and Jammu and Kashmir, because coverage of its court
cases is inadequate, and because many federal laws do not apply to it due to its special status within the
union.

For the structural estimation, we also remove observations where the shares of relationship-specific
materials, homogeneous materials, or labor in sales exceed two, and observations where sales or non-materials
expenditures are non-positive. To construct the households consumption shares HHω and the recipe sales
shares Rωρ in the counterfactual, we weigh each plant-year observation by the inverse of the number of times
the plant shows up in our sample.

The regression to estimate ζ (Table VI) is the only one where we identify parameters from time variation.
Our sample to construct the expenditure aggregates consists of all census plants (which are surveyed every
year). We restrict the sample in this way to eliminate fluctuations in the expenditure ratios that arise
artificially from changes in the sample.

A.3 Details on High Court and State creation
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Table A.1 Details on High Court Creation

Name Jurisdiction over
States/UT’s

Year
founded

Created with
State

Notes on High Court creation Reasons for State creation

Allahabad High Court Uttar Pradesh 1866 no Created as HC of Judicature of the
Northwestern Provinces by the Indian
High Courts Act 1861.

High Court of Judicature at Hyderabad Andhra Pradesh, Telan-
gana

1956 yes Created when Andhra Pradesh was cre-
ated as part of the State Reorganization
Act 1956

Creation of Andhra Pradesh was trig-
gered by the independence movement
of the Telugu-speaking population of
Madras Presidency.

Mumbai High Court Goa, Dadra and Nagar
Haveli,Daman and Diu,
Maharashtra

1862 no Created by the Indian High Courts Act
1861.

Kolkata High Court Andaman and Nicobar Is-
lands,West Bengal

1862 no Created by the Indian High Courts Act
1861.

Chhattisgarh High Court Chhattisgarh 2000 yes Created when Chhattisgarh state was
carved out of Mandhya Pradesh in 2000
(Madhya Pradesh Reorganisation Act)

Chhattisgarh was a separate division
in the Central Provinces under British
rule. Demand for a separate state goes
back to the 1920s.

Delhi High Court Delhi 1966 no At the time of independence, Punjab
HC had jurisdiction for Delhi. With the
State Reorganisation Act 1956, Punjab
merged with Pepsu. Given Delhi’s im-
portance as capital, it was decided that
they should have their own HC.

Gauhati High Court Arunachal Pradesh, As-
sam, Mizoram, Nagaland
*

1948 yes Created as HC of Assam in 1948,
with the Indian constitution; renamed
Gauhati HC in 1971 with the North
East Areas Reorganization Act. Lost
jurisdiction over Meghalaya, Manipur,
and Tripura in 2013

Gujarat High Court Gujarat 1960 yes Created when Gujarat split from Bom-
bay State with the Bombay Reorgani-
sation Act 1960.

Gujarat was created following the de-
mand of Gujarati-speaking people for
their own state (Mahagujarat move-
ment).

Himachal Pradesh High Court Himachal Pradesh 1971 yes Created with Himachal Pradesh becom-
ing a state (and therefore should have
a separate HC under the Indian consti-
tution)

Jammu and Kashmir High Court Jammu and Kashmir 1928 no Created by the Maharaja in 1928. Spe-
cial status: Laws passed by the Indian
parliament generally do not apply to
J&K (except foreign policy, communi-
cation, defense).

Jharkhand High Court Jharkhand 2000 yes Created when Jharkhand state was
carved out of Bihar in 2000 (Bihar Re-
organisation Act)

Jharkhand was richer in natural re-
sources than the rest of Bihar; Jhark-
hand Mukti Morcha independence
movement, and political considerations
by ruling parties.
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Name Jurisdiction over
States/UT’s

Year
founded

Created with
State

Notes on High Court creation Reasons for State creation

Karnataka High Court Karnataka 1884 no Founded by the British as the Chief
Court of Mysore in 1884.

Kerala High Court Kerala, Lakshadweep 1956 yes Created when Kerala was created as
part of the State Reorganization Act
1956

Idea of Kerala was to combine
Malayalam-speaking regions.

Madhya Pradesh High Court Madhya Pradesh 1936 no Established as Nagpur High Court
by King George V through a Letters
Patent on 2 Jan 1936. Moved to its
present location at Jabalpur with the
State Reorganization Act 1956.

Chennai High Court Puducherry, Tamil Nadu 1862 no Created by the Indian High Courts Act
1861.

Odisha High Court Odisha/Orissa 1948 no Orissa was split off from Bihar in 1936,
but did not get its own high court until
the drafting of the Indian constitution
(1948).

Patna High Court Bihar 1916 yes Created when Bihar and Orissa were
split off from Bengal Presidency.

Bengal nationalism and the undoing of
the 1905 Partition of Bengal.

Punjab and Haryana High Court Chandigarh, Haryana,
Punjab

1947 yes Created with the independence of In-
dia in 1947 (former HC of Punjab in
Lahore was mostly relevant for modern-
day Pakistan)

Rajasthan High Court Rajasthan 1949 yes Created with the foundation of Ra-
jasthan (1948-1950)

Sikkim High Court Sikkim 1955 no Established by the Maharaja of Sikkim
in 1955, became an Indian High Court
in 1975 when Sikkim joined India and
the monarchy was abolished

Uttarakhand High Court Uttarakhand 2000 yes Created when Uttaranchal was carved
out of Uttar Pradesh

Uttarakhand Kranti Dal independence
movement.

High Court of Mumbai, Goa Bench Goa, Daman and Diu,
Dadra and Nagar Haveli

1982 no Prior to the HC, a Judicial Commis-
sioner’s court existed in Goa. HC was
established to safeguard the judge’s in-
dependence (see Bombay HC at Goa
website).

Manipur High Court Manipur 2013 no Parties in Manipur demanded their own
high court

Meghalaya High Court Meghalaya 2013 no Parties in Meghalaya demanded their
own high court

High Court Of Tripura Tripura 2013 no Parties in Tripura demanded their own
high court
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B Vertical Span and Vertical Distance Measures

B.1 Definition

Let Xjω′ be the expenditure of plant j on ω′ ∈ Ω, then define for products ω, ω′ ∈ Ω, and a set B ⊂ Ω

βBωω′ =

∑
j∈Jω Xjω′∑

j∈Jω
∑
ω′′∈Ω\B Xjω′′

if ω′ 6∈ B, and βBωω′ = 0 otherwise. βBωω′ is the share of ω′ in industry ω’s materials basket that excludes
inputs from B.

Denote by Anωω′ the set of (n+ 1)-tuples (ω(0), ω(1), . . . , ω(n)) ∈ Ωn+1 such that

ω(0) = ω, ω(n) = ω′, (1)

ω(i) 6= ω(j) ∀(i, j) ∈ {0, . . . , n}2, i 6= j. (2)

Intuitively, Anωω′ is the set of all possible non-circular product chains of length n between ω and ω′. Then
let

δωω′ =

∞∑
n=1

∑
a∈An

ωω′

λ(a)∑∞
n′=1

∑
a′∈An′

ωω′
λ(a′)

· n

where

λ : Anωω′ → R, λ(ω(0), ω(1), . . . , ω(n)) =

n∏
i=1

β
{(ω(0),ω(1),...,ω(i−1))}
ω(i−1)ω(i)

is the share of ω′ in ω’s input mix through a given product chain. Hence, δωω′ is the average number of
production steps between an output ω and an input ω′, weighted by the overall expenditure of each product
chain in industry ω’s mix of materials, and excluding any circular product chains.

The plant-level measure of the vertical span of production, and the left-hand side of Table III, is then
the average distance of its inputs from the output, weighted by each inputs’ share in the plants materials
expenditure: let j ∈ Jω, then

verticalSpanj =
∑
ω′∈Ω

Xjω′∑
ω′′∈ΩXjω′′

δωω′ .

To understand why we exclude circular product chains, consider the following example: Some plants sell
aluminum and use aluminum scrap as an input, whereas some other plants use aluminum as an input and
sell aluminum scrap. Thus in the production of aluminum scrap, aluminum would show up as an input one
stage away, three stages away, five stages away, etc.

When we see a plant selling aluminum scrap and using aluminum as an input, we believe that it is the
distance of one that is relevant, not the distances of three, five, etc. In other words, we believe the plant is
turning the aluminum into scrap, but not turning the aluminum into scrap then back to aluminum and then
back to scrap. Therefore we believe the circular part of the production chain is not relevant for constructing
a plant’s distance to its inputs.

B.2 Examples

Table B.1 shows the average vertical distance of several input groups (defined as all inputs that contain the
strings “fabric”/“cloth”, “yarn”, or “cotton, raw” in their description”) from the output “cotton shirts”.
Fabrics and cloths are closest to the final output; yarns, which are used in the production of cloths and
fabrics, are further upstream, and raw cotton inputs are even further upstream.

Table B.2 shows vertical distances between aluminium ingots as an output, and several intermediate
inputs. Aluminium ingots can be made both by recycling castings and alloys, but also by casting molten
aluminium. The latter also serves as an intermediate input in the production of castings and alloys, and is
hence vertically more distant than the inputs which undergo recycling. Aluminium itself is produced from
aluminium oxide using electrolytic reduction (Hall-Heroult process). In turn, aluminium oxide is produced
by dissolving bauxite in caustic soda at high temperatures (hence the coal inputs).
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Table B.1 Vertical distance examples for 63428: Cotton Shirts

Input group Average vertical distance

Fabrics Or Cloths 1.67
Yarns 2.78
Raw Cotton 3.55

Table B.2 Vertical distance examples for 73107: Aluminium Ingots

ASIC code Input description Vertical distance

73105 Aluminium Casting 1.23
73104 Aluminium Alloys 1.46
73103 Aluminium 1.92
22301 Alumina (Aluminium Oxide) 2.92
31301 Caustic Soda (Sodium Hydroxide) 3.81
23107 Coal 3.85
22304 Bauxite, raw 3.93

C Additional Reduced Form Results

C.1 Controlling for Interactions with State and Industry Characteristics

Tables C.1, C.2, and C.3 show the main regressions of materials cost shares, input mixes, and vertical span
with a full set of controls. See Appendix A for definitions of the variables.

Tables C.4 and C.6 also include interactions of industry characteristics with court quality. Tables C.5
and C.7 show IV regressions where the court quality × industry characteristic interactions are instrumented
by the interaction of log court age and the corresponding industry characteristic.
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Table C.1 Additional Controls – Materials Cost Share
Dependent variable: Materials Expenditure in Total Cost

(1) (2) (3) (4)

Avg Age Of Civil Cases * Rel. Spec. -0.0167∗∗ -0.0118∗ -0.0156+ -0.0212∗∗

(0.0046) (0.0053) (0.0085) (0.0078)

LogGDPC * Rel. Spec. 0.0102 0.00556
(0.0091) (0.0096)

Trust * Rel. Spec. 0.0300 0.0353
(0.038) (0.038)

Language HHI * Rel. Spec. 0.0610 0.0612
(0.040) (0.040)

Caste HHI * Rel. Spec. 0.106∗ 0.0990+

(0.051) (0.052)

Corruption * Rel. Spec. 0.0641 0.0508
(0.097) (0.097)

5-digit Industry FE Yes Yes Yes Yes
District FE Yes Yes Yes Yes

Estimator OLS OLS IV IV

R2 0.480 0.484 0.480 0.484
Observations 208527 196748 208527 196748

Standard errors in parentheses, clustered at the state × industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table C.2 Additional Controls – Vertical Span

Dependent variable: Vertical Span

(1) (2) (3) (4)

Avg Age Of Civil Cases * Rel. Spec. 0.0195+ 0.0280∗ 0.0292 0.0368∗

(0.011) (0.012) (0.019) (0.018)

LogGDPC * Rel. Spec. 0.0288 0.0330
(0.024) (0.024)

Trust * Rel. Spec. -0.0939 -0.0984
(0.090) (0.091)

Language HHI * Rel. Spec. -0.0742 -0.0743
(0.092) (0.092)

Caste HHI * Rel. Spec. -0.182 -0.176
(0.12) (0.12)

Corruption * Rel. Spec. 0.481∗ 0.494∗

(0.24) (0.24)

5-digit Industry FE Yes Yes Yes Yes
District FE Yes Yes Yes Yes

Estimator OLS OLS IV IV

R2 0.443 0.453 0.443 0.453
Observations 163334 154021 163334 154021

Standard errors in parentheses, clustered at the state × industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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Table C.3 Additional Controls – Input Mix

Dependent variable: XR
j /(X

R
j +XH

j )

(1) (2) (3) (4)

Avg age of Civil HC cases -0.00547∗ -0.00530∗ -0.0144∗∗ -0.0167∗∗

(0.0022) (0.0024) (0.0044) (0.0045)

Log district GDP/capita -0.00384 -0.00980+

(0.0046) (0.0051)

Trust -0.00740 -0.00160
(0.018) (0.019)

Language HHI -0.0553∗∗ -0.0567∗∗

(0.021) (0.022)

Caste HHI -0.0428 -0.0525+

(0.028) (0.029)

Corruption -0.0676 -0.0844+

(0.044) (0.045)

5-digit Industry FE Yes Yes Yes Yes

Estimator OLS OLS IV IV

R2 0.441 0.449 0.441 0.449
Observations 225590 199339 225590 199339

Standard errors in parentheses, clustered at the state × industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table C.4 Materials Cost Share: Industry Characteristic Interactions

Dependent variable: Materials Expenditure in Total Cost

(1) (2) (3) (4) (5) (6)

Avg Age Of Civil Cases * Rel. Spec. -0.0117∗ -0.00987∗ -0.0118∗ -0.0112∗ -0.0105+ -0.00675
(0.0052) (0.0049) (0.0053) (0.0053) (0.0054) (0.0049)

Capital Intensity * Avg. age of cases -0.110∗∗ -0.0624+

(0.038) (0.033)

Ind. Wage Premium * Avg. age of cases -0.00146 -0.00180∗

(0.0011) (0.00088)

Ind. Contract Worker Share * Avg. age of cases -0.00116 0.0207
(0.030) (0.027)

Upstreamness * Avg. age of cases 0.00289+ 0.00363∗

(0.0015) (0.0015)

Tradability * Avg. age of cases -0.00104+ -0.00150∗∗

(0.00058) (0.00051)

State × Rel. Spec. Controls Yes Yes Yes Yes Yes Yes

5-digit Industry FE Yes Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes Yes

R2 0.484 0.484 0.484 0.484 0.484 0.484
Observations 196748 196748 196748 196748 196735 196735

Standard errors in parentheses, clustered at the state × industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
“State × Rel. Spec. controls” are interactions of GDP/capita, trust, language herfindahl, caste herfindahl,
and corruption with relationship-specificity.

11



Table C.5 Materials Cost Share: Industry Characteristic Interactions (IV)

Dependent variable: Materials Expenditure in Total Cost

(1) (2) (3) (4) (5) (6)

Avg Age Of Civil Cases * Rel. Spec. -0.0211∗∗ -0.0155∗ -0.0211∗∗ -0.0194∗ -0.0217∗∗ -0.0149∗

(0.0078) (0.0074) (0.0077) (0.0080) (0.0078) (0.0075)

Capital Intensity * Avg. age of cases -0.0262 -0.00252
(0.065) (0.062)

Ind. Wage Premium * Avg. age of cases -0.00406∗ -0.00343∗

(0.0018) (0.0016)

Ind. Contract Worker Share * Avg. age of cases 0.0311 0.00893
(0.040) (0.041)

Upstreamness * Avg. age of cases 0.00641∗ 0.00593+

(0.0032) (0.0031)

Tradability * Avg. age of cases 0.00108 0.000551
(0.00100) (0.0010)

State × Rel. Spec. Controls Yes Yes Yes Yes Yes Yes

5-digit Industry FE Yes Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes Yes

R2 0.484 0.484 0.484 0.484 0.483 0.483
Observations 196748 196748 196748 196748 196735 196735

Standard errors in parentheses, clustered at the state × industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
“State × Rel. Spec. controls” are interactions of GDP/capita, trust, language herfindahl, caste herfindahl,
and corruption with relationship-specificity.
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Table C.6 Vertical Span: Industry Characteristic Interactions

Dependent variable: Vertical Span

(1) (2) (3) (4) (5) (6)

Avg Age Of Civil Cases * Rel. Spec. 0.0279∗ 0.0232+ 0.0278∗ 0.0275∗ 0.0295∗ 0.0247∗

(0.012) (0.012) (0.012) (0.012) (0.012) (0.012)

Capital Intensity * Avg. age of cases 0.0279 0.0255
(0.073) (0.074)

Ind. Wage Premium * Avg. age of cases 0.00357+ 0.00299
(0.0021) (0.0021)

Ind. Contract Worker Share * Avg. age of cases -0.0263 0.00432
(0.026) (0.033)

Upstreamness * Avg. age of cases -0.00447 -0.00363
(0.0036) (0.0036)

Tradability * Avg. age of cases -0.00118∗ -0.000961
(0.00059) (0.00079)

State × Rel. Spec. Controls Yes Yes Yes Yes Yes Yes

5-digit Industry FE Yes Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes Yes

R2 0.453 0.453 0.453 0.453 0.453 0.453
Observations 154021 154021 154021 154021 154011 154011

Standard errors in parentheses, clustered at the state × industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
“State × Rel. Spec. controls” are interactions of GDP/capita, trust, language herfindahl, caste herfindahl,
and corruption with relationship-specificity.

13



Table C.7 Vertical Span: Industry Characteristic Interactions (IV)

Dependent variable: Vertical Span

(1) (2) (3) (4) (5) (6)

Avg Age Of Civil Cases * Rel. Spec. 0.0351∗ 0.0211 0.0362∗ 0.0360∗ 0.0388∗ 0.0257
(0.018) (0.019) (0.018) (0.018) (0.018) (0.019)

Capital Intensity * Avg. age of cases 0.259+ 0.370∗

(0.15) (0.17)

Ind. Wage Premium * Avg. age of cases 0.0110∗∗ 0.00927∗

(0.0042) (0.0043)

Ind. Contract Worker Share * Avg. age of cases -0.0483 0.110+

(0.047) (0.060)

Upstreamness * Avg. age of cases -0.00405 0.00258
(0.0070) (0.0070)

Tradability * Avg. age of cases -0.00397∗∗ -0.00544∗∗

(0.0013) (0.0018)

State × Rel. Spec. Controls Yes Yes Yes Yes Yes Yes

5-digit Industry FE Yes Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes Yes

R2 0.453 0.453 0.453 0.453 0.453 0.453
Observations 154021 154021 154021 154021 154011 154011

Standard errors in parentheses, clustered at the state × industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
“State × Rel. Spec. controls” are interactions of GDP/capita, trust, language herfindahl, caste herfindahl,
and corruption with relationship-specificity.
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C.2 Single-plant vs. Multi-plant Units

While we cannot link plants to firms, we have information about whether each plant belongs to a firm that
has other plants. Tables C.8, C.9, C.10 show the core results for plants that belong to single-plant firms
(indicated by a dummy), compared to plants that have sister plants, or for which it is not known whether
they do. The relationship between materials share and court quality is not different for single-plant firms
(same for the relationship between the input mix and court quality). On the other hand, the relationship
between vertical span and court quality is only present for single-plant firms. Perhaps multi-plant firms have
other ways of adjusting their organization to contracting frictions.

Table C.8 Materials Cost Share: Single-plant vs. Multi-plant units

Dependent variable: Materials Expenditure in Total Cost

(1) (2) (3) (4)

Avg Age Of Civil Cases * Rel. Spec. -0.0159∗∗ -0.0109∗ -0.0144+ -0.0201∗

(0.0048) (0.0055) (0.0086) (0.0079)

LogGDPC * Rel. Spec. 0.0101 0.00513
(0.0091) (0.0096)

Avg Age Of Civil Cases * Rel. Spec. * Single-plant firm -0.00103 -0.00119 -0.00267 -0.00221
(0.0017) (0.0018) (0.0019) (0.0019)

Single-plant firm -0.0151∗∗ -0.0150∗∗ -0.0129∗∗ -0.0136∗∗

(0.0025) (0.0026) (0.0026) (0.0027)

Rel. Spec. × State Controls Yes Yes

5-digit Industry FE Yes Yes Yes Yes
District FE Yes Yes Yes Yes

Estimator OLS OLS IV IV

R2 0.481 0.485 0.481 0.485
Observations 208527 196748 208527 196748

Standard errors in parentheses, clustered at the state × industry level. Single-product plants only.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
“Rel. Spec. × State Controls” are interactions of trust, language herfindahl, caste herfindahl,
and corruption with relationship-specificity.
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Table C.9 Input Mix: Single-plant vs. Multi-plant units

Dependent variable: XR
j /(X

R
j +XH

j )

(1) (2) (3) (4)

Avg age of Civil HC cases -0.00826∗∗ -0.00809∗∗ -0.0143∗∗ -0.0150∗∗

(0.0025) (0.0028) (0.0051) (0.0052)

Avg Age Of Civil HC Cases * Single-plant firm 0.00482 0.00445 -0.00122 -0.00292
(0.0032) (0.0034) (0.0063) (0.0068)

Single-plant firm -0.0371∗∗ -0.0343∗∗ -0.0203 -0.0138
(0.0093) (0.010) (0.017) (0.019)

Log district GDP/capita -0.00412 -0.0104∗

(0.0045) (0.0051)

State Controls Yes Yes

5-digit Industry FE Yes Yes Yes Yes

Estimator OLS OLS IV IV

R2 0.442 0.450 0.441 0.449
Observations 225590 199339 225590 199339

Standard errors in parentheses, clustered at the state × industry level. Single-product plants only.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
“State Controls” are trust, language herfindahl, caste herfindahl, and corruption.

Table C.10 Vertical Span: Single-plant vs. Multi-plant units

Dependent variable: Vertical Span

(1) (2) (3) (4)

Avg Age Of Civil Cases * Rel. Spec. -0.0101 -0.00297 -0.00300 -0.00150
(0.012) (0.013) (0.020) (0.019)

Avg Age Of Civil Cases * Rel. Spec. * Single-plant firm 0.0347∗∗ 0.0381∗∗ 0.0467∗∗ 0.0498∗∗

(0.0061) (0.0062) (0.0075) (0.0078)

Single-plant firm 0.0555∗∗ 0.0488∗∗ 0.0400∗∗ 0.0334∗∗

(0.0085) (0.0089) (0.0094) (0.0098)

LogGDPC * Rel. Spec. 0.0375 0.0448+

(0.023) (0.024)

Rel. Spec. × State Controls Yes Yes

5-digit Industry FE Yes Yes Yes Yes
District FE Yes Yes Yes Yes

Estimator OLS OLS IV IV

R2 0.446 0.456 0.446 0.456
Observations 163334 154021 163334 154021

Standard errors in parentheses, clustered at the state × industry level. Single-product plants only.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
“Rel. Spec. × State controls” are interactions of trust, language herfindahl, caste herfindahl,
and corruption with relationship-specificity.
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C.3 Time variation in court quality

The regressions in the main text use variation in the average age of pending cases in High Courts to identify
the impact of court congestion on input use. The microdata that is underlying the construction of this
measure is available for one point in time only, meaning the regressions are exploiting entirely cross-sectional
variation. In this section we try to use two different time-varying measures of court quality.

C.3.1 Creation of new High Court benches

Our first set of results using time variation in court congestion exploits two episodes where High Courts
created new benches in cities further away from the main bench, with the specific aim of increasing access
to justice in these remote areas. Two new benches of the Karnataka High Court were set up Dharwad and
Gulbarga in July 2008. They have jurisdiction over Belgaum, Balgakot, Koppal, Gadag, Dharwad, Uttara
Kannada, Haveri, and Bellary (Dharwad bench), and Bijapur, Gulbarga, Bidar, and Raichur (Gulbarga
bench). Similarly, in July 2004, the Chennai High Court set up a bench in Madurai, which has juris-
diction over Kanniyakumari, Tirunelveli, Tuticorin, Madurai, Dindigul, Ramanathapuram, Virudhunagar,
Sivaganga, Pudukkottai, Thanjavur, Tiruchirappalli and Karur districts.3

The regressions in Table C.11 look at whether wedges on relationship-specific inputs have decreased
differentially in districts that are under the jurisdiction of the new benches. The coefficients are not very
precisely estimated, since the districts with new benches account for few (about 6% on average) of the plants
in the respective states. Nevertheless, the results are qualitatively consistent with those from the main text.

Table C.11 Identification from Time Variation: Diff-in-Diff
XR/Sales sR − sH Materials/TotalCost Vert. Distance

(1) (2) (3) (4)

(New Bench in District)d× (Post)t 0.0126∗∗ 0.00960 -0.00305 0.00678
(0.0043) (0.0076) (0.0033) (0.010)

(New Bench in District)d× (Post)t× (Rel.Spec)ω 0.0142 -0.0764∗

(0.010) (0.031)

Plant × Product FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

R2 0.832 0.824 0.906 0.813
Observations 80427 74696 78462 77995

Figures C.1 and C.2 show the relative changes in the input mix in treated vs. untreated districts before
and after the new high court benches were installed.

C.3.2 Pendency Ratios

Our second set of regressions uses high court congestion ratios that vary by year, and that are published for
a subset of High Courts in the 245th report of the Law Commission of India. For each year between 2002
and 2012, the report publishes the number of new and disposed cases during the year, and pending cases at
the end of the year. We calculate the congestion ratio as

Congestion Ratiost =
(Pending Cases)st
(Disposed Cases)st

.

This ratio can be interpreted as the number of years it takes to dispose of the backlog, if the number of
disposed cases is constant over time.

3Source: Karnataka and Madras High Court websites: https://karnatakajudiciary.kar.nic.in/ and
http://www.hcmadras.tn.nic.in/
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Figure C.1 Relative change in XR/Sales after new court bench is set up
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The figure shows the evolution of the share of expenditure on relationship-specific inputs in
sales, in treated districts relative to non-treated districts. Treatment happens at the start
of period 0. Regression includes firm × product fixed effects and year dummies.

We should stress that these congestion ratios are not a good way to measure the cross-sectional variation
in court speed. The Law Commission report collects these data from surveys of the High Courts, and
mentions explicitly that different courts measure cases (as well as institution and disposal of cases) very
differently, making comparisons problematic. However, if the cases and flows are measured in a consistent
way over time, we may still use them for regressions where we compare input use and court quality over
time, within state-industry pairs. Tables C.12 to C.14 show these regressions. While these results cannot be
taken as evidence for a causal channel (we do not know what drives changes in pendency ratios), it is worth
noting that they are consistent with the results from Section 2.

Table C.12 Materials Shares and Court Quality – Time variation

Mat. Exp. / Total Cost

(1)

Court Congestion Ratio * Rel. Spec. -0.0573∗∗

(0.0066)

Rel. Spec. × State Controls Yes

Industry × District FE Yes

Estimator OLS

R2 0.718
Observations 86309

Standard errors in parentheses, clustered at the state × industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

“Rel. Spec. × State Controls” are interactions of trust, language herfindahl, caste herfindahl,

and corruption with relationship-specificity.
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Figure C.2 Relative change in composition of input mix after new court bench is set up
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The figure shows the evolution of sR−sH , in treated districts relative to non-treated districts.
Treatment happens at the start of period 0. Regression includes firm × product fixed effects
and year dummies.

Table C.13 Input Mix and Court Quality – Time variation

Dependent variable: XR
j /(X

R
j +XH

j )

(1)

Court Congestion Ratio -0.0118∗∗

(0.0041)

State Controls Yes

Industry × District FE Yes

Estimator OLS

R2 0.661
Observations 87936

Standard errors in parentheses, clustered at the state × industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

“State Controls” are trust, language herfindahl, caste herfindahl, and corruption.
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Table C.14 Vertical Distance and Court Quality – Time variation

Dependent variable: Vertical Span

(1)

Court Congestion Ratio * Rel. Spec. 0.0164
(0.010)

Rel. Spec. × State Controls Yes

Industry × District FE Yes

Estimator OLS

R2 0.660
Observations 71667

Standard errors in parentheses, clustered at the state × industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

“Rel. Spec. × State controls” are interactions of trust, language herfindahl, caste herfindahl,

and corruption with relationship-specificity.
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C.4 Distortions and International Sourcing

This section presents three tables describing how plants’ usage of domestically- and foreign-sourced inputs
varies with distortions. The first and second columns of Table C.15 shows that, relative to those in industries
that tend to use standardized inputs, the expenditure shares on domestic inputs of plants in industries that
use relationship-specific inputs declines as courts get more congested. The third and fourth columns of
Table C.15 shows that this estimated relationship is stronger when we use our instrumental variables strategy
with court age as an instrument for congestion.

Table C.15 Domestic Materials Shares and Court Quality (Fact 3)

Dependent variable: Dom. Mat. Exp. in Total Cost

(1) (2) (3) (4)

Avg Age Of Civil Cases * Rel. Spec. -0.0110+ -0.0127∗ -0.0349∗∗ -0.0279∗∗

(0.0057) (0.0063) (0.0097) (0.0085)

LogGDPC * Rel. Spec. -0.0124 -0.0200+

(0.0098) (0.010)

Trust * Rel. Spec. -0.0415 -0.0331
(0.043) (0.043)

Language HHI * Rel. Spec. 0.00109 0.00139
(0.056) (0.056)

Caste HHI * Rel. Spec. 0.0466 0.0355
(0.074) (0.075)

Corruption * Rel. Spec. 0.0654 0.0439
(0.12) (0.12)

5-digit Industry FE Yes Yes Yes Yes
District FE Yes Yes Yes Yes

Estimator OLS OLS IV IV

R2 0.432 0.439 0.431 0.439
Observations 208527 196748 208527 196748

Standard errors in parentheses, clustered at the state × industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table C.16 shows the same regressions but with the cost share of imported intermediates. Here, the OLS
and IV specifications point to opposite results, and further investigation is required. The OLS specifications
indicate that among those that rely more on more relationship-specific inputs, more congestion leads to lower
shares of imported inputs relative to those that rely on standardized inputs. The IV specification indicates
that more congestion leads to relatively higher imported input shares in those that rely on relationship-specific
inputs, indicating that firms respond to distortions by substituting from domestic to foreign suppliers.

Table C.17 shows the results on the share of imports in the basket of relationship-specific (first two
columns) and homogenous (last two columns) inputs. More congestion leads to a higher share of imports in
both baskets, but the substitution is stronger in the basket of relationship-specific goods.
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Table C.16 Import Shares and Court Quality, OLS + IV

Dependent variable: Imported Materials Expenditure in Total Cost

(1) (2) (3) (4)

Avg Age Of Civil Cases * Rel. Spec. -0.00563∗∗∗ 0.000870 0.0193∗∗∗ 0.00666∗∗

(0.0013) (0.0014) (0.0025) (0.0022)

LogGDPC * Rel. Spec. 0.0227∗∗∗ 0.0255∗∗∗

(0.0027) (0.0028)

Trust * Rel. Spec. 0.0716∗∗∗ 0.0683∗∗∗

(0.011) (0.011)

Language HHI * Rel. Spec. 0.0599∗∗∗ 0.0598∗∗∗

(0.012) (0.012)

Caste HHI * Rel. Spec. 0.0593∗∗∗ 0.0635∗∗∗

(0.016) (0.016)

Corruption * Rel. Spec. -0.00127 0.00691
(0.031) (0.031)

Constant -0.113∗∗∗

(0.015)

5-digit Industry FE Yes Yes Yes Yes
District FE Yes Yes Yes Yes

Estimator OLS OLS IV IV

R2 0.330 0.342 0.329 0.342
Observations 208527 196748 208527 196748

Standard errors in parentheses, clustered at the state × industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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Table C.17 Substitution into Importing

R-Imports in Total R H-Imports in Total H

(1) (2) (3) (4)

Avg age of Civil HC cases 0.0193∗∗ 0.00925∗∗ 0.0112∗∗ 0.00440∗∗

(0.0023) (0.0018) (0.0016) (0.0013)

Log district GDP/capita 0.0224∗∗ 0.0180∗∗

(0.0027) (0.0019)

Trust in other people (WVS) 0.110∗∗ 0.0564∗∗

(0.012) (0.011)

Language Herfindahl 0.0162 -0.0292∗∗

(0.019) (0.0093)

Caste Herfindahl 0.0584∗ 0.0171
(0.028) (0.013)

Corruption 0.0315 -0.0912∗∗

(0.028) (0.022)

5-digit Industry FE Yes Yes Yes Yes

Estimator IV IV IV IV

R2 0.227 0.251 0.180 0.197
Observations 168120 148165 168953 149623

Standard errors in parentheses, clustered at the state × industry level.
Dependent variable in columns (1) and (2) (resp. (3) and (4)) is the share of relationship-
specific (homogeneous) imports in total relationship-specific (homogeneous) materials.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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C.5 Materials Shares with Size and Age

Table C.18 shows that materials cost shares do not correlate much with size and age of the plant. Table
C.19 shows correlations of input wedges with various plant-level characteristics.

Table C.18 Plant Age and Size

Dependent variable: Mat. Exp in Total Cost

(1) (2) (3)

Plant Age -0.000695∗∗ -0.000679∗∗

(0.000065) (0.000063)

Log Employment -0.00257∗∗ -0.00176∗

(0.00086) (0.00083)

5-digit Industry FE Yes Yes Yes
District FE Yes Yes Yes

Estimator

R2 0.481 0.481 0.482
Observations 205109 208179 204767

Standard errors in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table C.19 Wedges and Plant Characteristics

Age Size Multiproduct # Products

(1) (2) (3) (4)

Avg Age Of Civil Cases * Rel. Spec. 0.620+ -0.0253 -0.0121 -0.0580
(0.32) (0.040) (0.0076) (0.037)

5-digit Industry FE Yes Yes Yes Yes
District FE Yes Yes Yes Yes

R2 0.214 0.339 0.301 0.295
Observations 353392 359820 360316 360316

Note: Sample includes multiproduct plants. Industry dummies refer to the 5-digit industry
with the plants’ highest production value.

D Exploring the Nature of Contracting Frictions

What do these regressions tell us about the form of contracting frictions? The literature on contracting
frictions (e.g., Antràs (2003)) has emphasized that holdup problems may result in transactions in which the
seller shades on the quantity or quality of the inputs. These can be modeled in different ways that would
show up differently in the data.

If distortions resulted in an inefficiently low quantity of the input, the buyer’s shadow value of the
input would be above the seller’s marginal cost. In this formulation, the distortion would be observationally
equivalent to a positive wedge as in Hsieh and Klenow (2009). One testable implication of this formulation
is that the distortion should raise the buyer’s ratio of revenue to total cost. In Appendix D.1, we explore
this relationship in our setting. We find that plants that are subject to larger wedges—those in industries
that tend to use relationship-specific inputs in states with congested courts—have lower revenue-cost ratios,
in contrast to the prediction from a quantity distortion.4

4The negative correlation of price-cost margins with distortions holds even when controlling for plant size and age.
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Distortions that result in an inefficiently low quality of the input can take several forms, depending on
the relationship between quality and quantity. The simplest form is that quality is quantity-augmenting,
in which case the distortion would be equivalent to a higher effective price of the input (i.e. an iceberg
cost). In this case, the impact on cost shares depends on the elasticity of substitution between distorted and
undistorted inputs. If primary inputs and intermediate inputs were substitutes, a higher effective price of the
input would cause the cost share of intermediates to fall. However, we believe the evidence does not support
an elasticity of substitution between primary and intermediate inputs that is larger than unity. We know
of two estimates of long-run plant level elasticities of substitution between materials and primary inputs,
Oberfield and Raval (2014) and Appendix B.3 of Atalay (2017). Each find elasticities that are slightly less
than unity. Further, we can investigate this elasticity in the context of Indian manufacturing plants. In
Appendix D.2 we use upstream contracting distortions as a shifter of the seller’s costs. We find evidence
against an elasticity greater than one, in line with what the existing literature finds.

Finally, it could be that quality and quantity enter the production function in different ways. For
example, it may be that the seller needs to customize the good for the buyer and can do so inexpensively,
and the buyer can do the customization herself but less efficiently than the seller. In that case, if the
friction causes the seller to insufficiently customize the good, the buyer’s cost will rise because the wrong
producer is doing the customization. Further, part of this effective expenditure on the distorted input will
appear in the data as an expenditure by the buyer on primary factors–the primary factors used by the buyer
to finish the customization of the good. Thus the expenditure share on intermediates (and especially on
relationship-specific intermediates) will be lower when distortions are more prevalent, even if the elasticity
of substitution between primary and intermediate inputs is weakly less than one. This last remaining way
of modeling distortions is consistent with the regressions of materials cost shares (Table I) and the mix of
distorted vs undistorted materials inputs (Table II). We will therefore use it in the subsequent model.5

D.1 Distortions and Revenue-Cost Margins

Table D.1 shows how plants’ ratios of sales to cost vary with the level of distortions. Court congestion should
increase distortions for plants in industries that tend to rely on relationship-specific inputs relative to those
in industries that tend to rely on homogeneous inputs. The first row of the table indicates that, across
all measures, ratios of sales to cost decline with distortions. The second and third column shows that this
appears to be the direct impact of the distortions rather than the indirect impact of distortions on size or
age.

5It could be that the buyer and seller are equally good at customization, in which case the friction simply leads to
a different division of labor without raising the buyers marginal cost. However, we find that distortions reduce entry
(see Appendix D.3), suggesting that they do increase marginal cost.
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Table D.1 Sales over Total Cost
Dependent variable: Sales/Total Cost

(1) (2) (3) (4) (5) (6)

Avg Age Of Civil Cases * Rel. Spec. -0.0353∗∗ -0.0347∗∗ -0.0345∗∗ -0.0494∗ -0.0496∗ -0.0508∗

(0.0097) (0.0094) (0.0093) (0.022) (0.022) (0.022)

Plant Age 0.000574∗∗ 0.000258+ 0.000575∗∗ 0.000259+

(0.00014) (0.00014) (0.00014) (0.00014)

Log Employment 0.0314∗∗ 0.0314∗∗

(0.0016) (0.0016)

5-digit Industry FE Yes Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes Yes

Estimator OLS OLS OLS IV IV IV

R2 0.114 0.110 0.115 0.114 0.110 0.115
Observations 208527 205109 204767 208527 205109 204767

Standard errors in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

D.2 Plant-level substitutability of inputs

Fact 1 showed that when relationship-specific inputs are more severely distorted, the cost share of those
inputs declines. We posit in Section 2.5 that this happens because the buyer must expend additional primary
inputs in order to use the relationship-specific input. An alternative possibility is that the distortion raises
the price paid to the supplier. If primary inputs and intermediate inputs were substitutes, the cost share
of intermediates would fall. However, we believe the evidence does not support an elasticity of substitution
between primary and intermediate inputs that is larger than unity.

We know of two estimates of long-run plant level elasticities of substitution between materials and primary
inputs, Oberfield and Raval (2014) and Appendix B.3 of Atalay (2017). Each find elasticities slightly lower
than unity. Further, we can investigate this elasticity in our context. Table D.2 uses the interaction of court
quality with the average dependence on relationship-specific inputs among an industry’s upstream industries
to stand in for a shifter to the cost of intermediate inputs. The coefficient of interest is in the third row.
Neither the OLS regressions in columns (1) and (2) nor the IV regressions in columns (3) and (4) provide
support for an elasticity of substitution larger than one, which would require a negative coefficient. Thus, we
do not find support for an assertion that primary and intermediate inputs are substitutes at the plant-level.
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Table D.2 Plant-level elasticity of substitution

Dependent variable: Materials Expenditure in Total Cost

(1) (2) (3) (4)

Avg Age Of Civil Cases * Rel. Spec. -0.0147+ -0.0135 -0.0397∗∗ -0.0401∗∗

(0.0080) (0.0089) (0.013) (0.013)

LogGDPC * Rel. Spec. 0.0112 0.00653
(0.0090) (0.0095)

Avg Age Of Civ. Cases * Rel. Spec. of Upstream Sector -0.00360 0.00268 0.0450∗ 0.0349+

(0.011) (0.012) (0.019) (0.020)

Trust * Rel. Spec. 0.0274 0.0342
(0.038) (0.038)

Language HHI * Rel. Spec. 0.0467 0.0501
(0.032) (0.032)

Caste HHI * Rel. Spec. 0.0980∗ 0.0897+

(0.050) (0.050)

5-digit Industry FE Yes Yes Yes Yes
District FE Yes Yes Yes Yes

Estimator OLS OLS IV IV

R2 0.480 0.484 0.480 0.484
Observations 208527 196748 208527 196748

Standard errors in parentheses, clustered at the state × industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

D.3 Distortions are costly

In our microfoundation, the reason a distortion is costly is that the resource the supplier saves by delivering
an imperfect input is smaller than the resources used by the buyer correcting the input. An alternative
possibility is that these costs are roughly equal, in which case there would be no resource cost of the
distortion despite the fact that the buyer’s reduced cost share of relationship-specific inputs. In the extreme,
this would mean that despite the impact on cost shares, the loss in productivity would be smaller than
suggested by Section 4.2. We argue here that distortions do indeed raise the buyer’s cost. Table D.3 shows
that when distortions are more likely to be severe—in industries that tend to rely on relationship-specific
inputs in states with slower courts—industries tend to have fewer plants.
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Table D.3 Extensive-margin regressions

Dependent variable: log |Jdω,t|

(1) (2) (3) (4) (5) (6)

Avg Age Of Civil Cases * Rel. Spec. -0.0413∗ -0.0382∗ -0.0259 -0.133∗∗ -0.107∗∗ -0.106∗∗

(0.017) (0.017) (0.018) (0.035) (0.035) (0.032)

LogGDPC * Rel. Spec. 0.0505∗∗ 0.0518∗∗ 0.0313 0.0353∗

(0.016) (0.016) (0.019) (0.018)

Trust * Rel. Spec. -0.0482 0.00793
(0.14) (0.14)

Language HHI * Rel. Spec. 0.120 0.121
(0.15) (0.15)

Caste HHI * Rel. Spec. 0.225∗∗ 0.171+

(0.086) (0.087)

Corruption * Rel. Spec. 0.537+ 0.381
(0.32) (0.33)

5-digit Industry FE Yes Yes Yes Yes Yes Yes
State × Year FE Yes Yes Yes Yes Yes Yes

Estimator OLS OLS OLS IV IV IV

R2 0.410 0.417 0.423 0.410 0.417 0.423
Observations 191008 183214 177075 191008 183214 177075

Standard errors in parentheses, clustered at the state × industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Note: Dependent variable is the log number of producers of ω in a state d at time t. Multi-product plants are
counted once for each product. GDP per capita is the average district GDP per capita within each state.

D.4 Do distortions cause the buyer to use one particular component of primary
inputs?

In Section 2.5 we posit that when a relationship-specific input is distorted, the buyer must use primary inputs
to complete the customization. Primary inputs includes labor, capital, services, and some other inputs. We
explore now whether the the distortion affects spending on any particular primary input more than others.
Table D.4 shows regressions of the cost share of labor/capital/services/other inputs in total non-material
inputs on the interaction of court quality and relationship-specificity. If one particular component of primary
inputs was used to customize the distorted input, or if the distorted intermediate input were particularly
complementary with one particular component, then we should find that the share of that input in non-
materials costs should be higher whenever the contracting frictions are stronger. We find that this is not the
case, suggesting that distortions are being paid in the overall bundle of primary inputs.
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Table D.4 Cost share of factors in primary inputs

Labor Capital Services Rest

(1) (2) (3) (4)

Avg Age Of Civil Cases * Rel. Spec. -0.000504 0.00405 -0.000248 -0.00355
(0.0054) (0.0030) (0.0046) (0.0049)

5-digit Industry FE Yes Yes Yes Yes
District FE Yes Yes Yes Yes

R2 0.310 0.232 0.341 0.269
Observations 208527 208527 208527 208527

Standard errors in parentheses, clustered at the state × industry level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
The dependent variable is the cost share of the factor in the total cost of non-material inputs.

E Imperfect Contract Enforcement

Suppliers can sell a good that is defective or imperfectly customized to the buyer. If this happens, the
buyer must use labor to correct the defect or complete the customization. In principle, the supplier can
save on production cost by producing defective/imperfectly customized inputs. To produce one unit of the
intermediate input that is defective enough so that the buyer must use up ψx units of labor, the supplier’s
unit cost is cs(ψ), where cs(0) ≡ cs is the supplier’s unit cost of producing a defect-free unit of the input. We
assume that c′s(ψ) ≥ −w, which ensures that the sum of the buyer’s and supplier’s payoffs are maximized
at ψ = 0.

A contract between buyer and supplier is a triple (M c, ψc, xc), where xc ≥ 0 is the quantity of the good
to be delivered, ψc is a desired customization level, M c is a payment from the buyer to the supplier upon
delivery. We assume that quantity x is costlessly enforceable, which ensures that the supplier chooses x = xc.

Both the buyer and supplier anticipate equilibrium behavior. In line with the main text, we assume that
the buyer has full bargaining power, in that she can make a take-it-or-leave-it offer to the supplier.

If the contract has been breached (either because the supplier chooses a ψ > ψc or because the buyer
chooses M < M c), either party could enforce the contract in a court. The outcome of enforcement is deter-
ministic, and enforcement is costly. The plaintiff has to pay enforcement costs, which amount to a proportion
π of the value of the transaction (M c), while the defendant expends δ of the value of the transaction. The
value of the claim to the plaintiff is the net transfer to her that would arise under enforcement. Enforcement
costs cannot be recovered in court. The enforcement cost for the plaintiff π ∈ (0, 1) is randomly drawn for
each buyer-supplier pair.

In principle, the contracts can be written to get around this friction. However, the doctrine of expectation
damages limits the damages the buyer can collect from the supplier. The damages cannot be more than
what is needed so that the buyer’s is as well off as she would have been had the contract been honored.6

Thus if the supplier breaches by choosing ψ > ψc and the buyer enforces the contract in court, the buyer
receives a gross transfer of wψx−wψcx. Thus net of enforcement costs, the buyer receives wψx−wψcx−πM c,
and the supplier pays wψx−wψcx+ δM c. If the buyer chooses M < M c, the court orders the buyer to pay
M c −M to the buyer. Thus net of enforcement costs, the supplier receives M c −M − πM c, and the buyer
pays M c −M + δM c.

Given the choice of supplier, the buyer’s payoff from the contract (up to an additive normalizing constant)
is −wψx−M plus the value of any net transfers mandated by the court. Similarly, the payoff to the supplier
(up to an additive normalizing constant) can be expressed as −c(ψ)x+M plus the value of any net transfers
mandated by the court.

E.1 Timing of events

1. The buyer makes a take-it-or-leave-it offer of a contract, (M c, ψc, xc)

6See Shavell (1980) and Boehm (2018).
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2. The supplier decides whether to accept the offer. If the supplier accepts the contract, proceed to the
next step.

3. The supplier produces x units at defectiveness level ψ ≥ 0 for a unit cost of cs(ψ).

4. The buyer makes a transfer M .

5. If the contract has been breached, either party could enforce the contract in a court.

6. Production occurs.

E.2 Solving the game

Lemma E.1 M c > 0, M = (1− π)M c, ψ = ψc + πM
c

xw , and neither party sues for breach of contract.

Proof. First, M c must be strictly positive because otherwise the supplier would not agree to the contract.
The supplier would sue if (M c −M)− πM c > 0. Thus it must be that M ≤ (1− π)M c because otherwise
the buyer could strictly improve her payoff by reducing M without risk of getting sued. On the other hand,
if M < (1− π)M c, the buyer could strictly increase her payoff by setting M = (1− π)M c + ε, for small
enough ε, in which case the buyer would avoid getting sued and would avoid legal costs. Therefore it must
be that M ≥ (1− π)M c. Together, these imply that M = (1− π)M c. There cannot be an equilibrium
in which M = (1− π)M c and the supplier sues with positive probability, because in that case, the buyer
would have been strictly better off by setting M = (1− π)M c+ ε, for small enough ε, and avoiding the legal
costs of getting sued.

Similarly, the buyer would sue only if ψ > ψc and (ψxw − ψcxw) − πM c > 0. It must be that
(ψxw − ψcxw) − πM c ≥ 0, because otherwise the supplier could strictly improve her payoff by raising ψ
without risk of getting sued. On the other hand, if ψxw > ψcxw + πM c, the buyer would sue. Thus the
supplier would be better off setting ψ̃ = ψc + πMc

xw − ε for small enough ε and avoiding the legal costs of

getting sued: c′

w > −1 implies that the change in payoff is positive for small enough ε:

−c
(
ψ̃
)
x− [−c (ψ)x− (ψxw − ψcxw)− δM c] = xw

∫ ψ

ψ̃

c′ (u)

w
du+ (ψxw − ψcxw) + δM c

> xw

∫ ψ

ψ̃

(−1) du+ (ψxw − ψcxw) + δM c

= xw
(
ψ̃ − ψ

)
+ (ψxw − ψcxw) + δM c

= xwψ̃ − ψcxw + δM c

= xw

(
ψc +

πM c

xw
− ε
)
− ψcxw + δM c

= (π + δ)M c − εxw

Therefore it must be that ψxw = ψcxw + πM c. Finally, there cannot be an equilibrium in which ψxw =
ψcxw+πM c and the buyer sues with positive probability because in that case the supplier would have been
strictly better off by setting ψ̃ = ψc + πMc

xw − ε.
Given those, we can find the payoff to the buyer and supplier of an arbitrary contract (M c, ψc, xc):

buyer : −ψxw −M = −ψcxw − πM c − (1− π)M c

supplier : −c (ψ)x+M = −c
(
ψc +

πM c

xw

)
x+ (1− π)M c

It will be convenient to define pc ≡ Mc

xc and p ≡ M
x to be the average price as specified in the contract and
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in equilibrium. With this, we can express the contract and payoffs in per unit terms:

buyer : −ψcw − πpc − (1− π)pc

supplier : −c
(
ψc +

πpc

w

)
+ (1− π)pc

The buyer makes a take-it-or-leave-it offer of

max
pc,ψc

−pc − ψcw

subject to

−c
(
ψc +

πpc

w

)
+ (1− π)pc ≥ 0

Lemma E.2 Any contract for which the constraint does not bind can be improved upon.

Proof. Suppose that (pc, ψc) is a contract for which the constraint is not binding. Then consider the

alternative contract
(
p̃c, ψ̃c

)
in which p̃c = pc− ε and ψ̃c = ψc + π

w ε. In this alternative contract ψ̃c + πp̃c

w =

ψc + πpc

w . If ε is small enough, the constraint will not be violated, and the buyers payoff strictly rises:

−p̃c − ψ̃cw = − (pc − ε)−
(
ψc +

π

w
ε
)
w = −pc − ψcw + (1− π)ε > −pc − ψcw

Claim E.1 ψc = 0 and pc is the unique solution to (1− π)pc = c
(
πpc

w

)
.

Proof. First, note that c′ (ψ) > −w implies that that if ψ > ψ̃, −c
(
ψ̃
)
> −c(ψ) + w

(
ψ̃ − ψ

)
. Consider a

contract (pc, ψc) with ψc > 0. The buyer’s problem can be expressed as

max
pc,ψc

−pc − ψcw subject to (1− π)pc − c
(
ψc +

πpc

w

)
≥ 0.

Consider the alternative contract in which ψ̃c = ψc − ε and p̃c = pc + εw. That alternative contract would
leave the buyer with the same payoff. We next show that the constraint would not bind, which will imply
that the contract can be improved upon. The left hand side of the constraint is

LHS = (1− π)p̃c − c
(
ψ̃c +

πp̃c

w

)
> (1− π) p̃c +

{
−c
(
ψc +

πpc

w

)
+

[(
ψ̃c +

πp̃c

w

)
−
(
ψc +

πpc

w

)]
w

}
≥ (1− π)p̃c +

{
−(1− π)pc +

[(
ψ̃c +

πp̃c

w

)
−
(
ψc +

πpc

w

)]
w

}
= p̃c − pc +

(
ψ̃c − ψc

)
w

= 0

where the weak inequality imposes the fact that the constraint holds for the original contract.
Imposing that φc = 0, the buyer’s problem can then be expressed as

max
pc
−pc subject to (1− π)pc − c

(
πpc

w

)
≥ 0

where the constraint binds. This means that pc solves (1 − π)pc = c
(
πpc

w

)
. Since the left hand side is
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increasing in pc while the right hand side is decreasing in pc, and since the two curves must cross at least
once, there is a unique solution.

We study a limiting economy in which cs(ψ)→ cs, i.e., the supplier can customize the good at essentially

no cost. For example, we could have c (ψ) = c̄e−
bwψ
c̄ , with b < 1, and study the limit as b→ 0. In this limit,

pc =
c̄

1− π
ψc = 0

p = c̄

ψ =
πpc

w
=

π

1− π
c̄

w

In this economy, π is drawn randomly. We define tx ≡ 1
1−π .

E.3 Production

Given prices and the defectiveness of each input, the buyer minimizes cost. Let lprod be the mass of labor
hired for production and let lxω̂ be the mass of labor hired to customize the defective inputs. The firm’s cost
minimization problem can be described as:

minw

lprod +
∑
ω̂∈Ω̂ρR

lxω̂

+
∑
ω̂∈ΩρR

pω̂s (ψω̂s)xω̂ +
∑
ω̂∈ΩρR

pω̂sxω̂

subject to

G

(
bll
prod,

{
bω̂zω̂ min

{
xω̂,

lxω̂
ψω̂s

}}
ω̂∈Ω̂ρR

, {bω̂zω̂sxω̂}ω̂∈Ω̂ρH

)
≥ y

This minimization problem can be rewritten as

minwlprod +
∑
ω̂∈ΩρR

(wψxω̂s + pω̂s(ψω̂s))xω̂ +
∑
ω̂∈ΩρH

pω̂sxω̂

subject to

G
(
bll
prod, {bω̂zω̂sxω̂}

ω̂∈Ωρ

)
≥ y

Thus if C is the unit cost function associated with G, the firms unit cost can be expressed as

C

(
w

bl
,

{
pω̂s + wψω̂s
bω̂zω̂s

}
ω̂∈Ω̂ρR

,

{
pω̂s
bω̂zω̂s

}
ω̂∈Ω̂ρH

)

or, given the equilibrium actions of the buyers and suppliers,

C

(
w

bl
,

{
tω̂spω̂s
bω̂zω̂s

}
ω̂∈Ω̂ρR

,

{
pω̂s
bω̂zω̂s

}
ω̂∈Ω̂ρH

)
.

F Proofs

F.1 Proof of Proposition 1

Let Fω(c) be the fraction of firms in industry ω with cost weakly less than c (when the wage is normalized
to unity). Similarly, let Fωρ(c) be the fraction of firms in ω that have a technique of recipe ρ that delivers
unit cost weakly less than c. These satisfy 1− Fω(c) =

∏
ρ∈%(ω) [1− Fωρ(c)].
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It will also be convenient to define, for recipe ρ that uses inputs Ω̂ρ = (ω̂1, ..., ω̂n), the functions
Bωρ(b) where b = (bl, b1, ..., bn) and Vωρ(v) where v = (vl, v1, ..., vn). These functions are defined by

Bωρ(b) ≡ Bωρb
−βρl
l

∏
k b
−βρω̂k
k so that Bωρ(db) = Bωρβ

ρ
l b
−βρl −1

l dblβ
ρ
ω̂1
b
−βρω̂1

−1

1 db1...β
ρ
ω̂n
b
−βρω̂n−1
n dbn. Similarly,

let Vωρ(v) ≡ vβ
ρ
l

l

∏
k v

βρω̂k
k so that Vωρ(dv) = βρl v

βρl −1

l dvlβ
ρ
ω̂1
v
βρω̂1
−1

1 dv1...β
ρ
ω̂n
v
βρω̂n−1
n dvn.

Lemma F.1 Under Assumption 2, for a firm of type ω,

Pr(λω̂(φ) > λ|bω̂(φ)) = e−(λbω̂(φ)/Λω̂)ζω̂

where

Λω̂ =

{
t∗x
[∫∞

0
c−ζRdFω̂(c)

]−1/ζR
, ω̂ ∈ ΩρR[∫∞

0
c−ζHdFω̂(c)

]−1/ζH
, ω̂ ∈ ΩρH

and

t∗x ≡
(∫ ∞

1

t−ζRx dT (tx)

)−1/ζR

.

Proof. Consider first a relationship-specific input ω̂ ∈ Ω̂ρR. Consider a technique with a common component
of input-augmenting productivity bω̂(φ). The number of suppliers with match-specific component of input-
augmenting productivity greater than z is Poisson with mean z−ζR . For a potential supplier with z and
input wedge tx, the probability that the supplier’s cost is low enough so that the supplier delivers an effective

cost weakly less than λ is Pr
(

pstx
bω̂(φ)z ≤ λ

)
= Pr (ps ≤ λzbω̂(φ)/tx) = Fω̂ (λzbω̂(φ)/tx), where Fω̂(c) is the

fraction of firms in ω̂ with unit cost (and hence price) weakly less than c. Integrating over realizations of z
and tx, we have that the number of potential suppliers that deliver effective cost weakly less than λ follows
a Poisson distribution with mean∫ ∞

0

∫ ∞
1

Fω̂ (λzbω̂(φ)/tx) dT (tx)ζRz
−ζR−1dz

Using the change of variables c = λzbω̂(φ)/tx and the definition of Λω̂, this is

[λbω̂(φ)]
ζR

∫ ∞
0

∫ ∞
1

Fω̂(c)t−ζRx dT (tx)ζRc
−ζR−1dv = [λbω̂(φ)/Λω̂]

ζR

The probability that no such suppliers arrive is then simply

Pr(λω̂(φ) > λ|bω̂(φ)) = e−(λbω̂(φ)/Λω̂)ζR

The logic for homogeneous inputs is the same.

Lemma F.2 Under Assumption 1,∫ ∞
0

...

∫ ∞
0

1 {Cωρ (vl, v1, ..., vn) ≤ 1} Vωρ(dv) <∞

Proof. Assumption 1 implies that for each k ∈ {l, 1, ..., n} there is a v̄k such that Cωρ (0, ..., 0, v̄k, 0, ..., 0) = 1.
In other words, v̄k is defined so that if the effective cost of the kth input were equal to v̄k and the cost of
all other inputs were equal to zero then the firm’s cost would be 1. Thus if the firm’s cost of the kth input
were higher than v̄k, the firm’s cost must be greater than 1. We therefore have
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∫ ∞
0

...

∫ ∞
0

1 {Cωρ (vl, v1, ..., vn) ≤ 1} Vωρ(dv) =

∫ v̄l

0

∫ v̄1

0

...

∫ v̄n

0

1 {Cωρ (vl, v1, ..., vn) ≤ 1} Vωρ(dv)

≤
∫ v̄l

0

∫ v̄1

0

...

∫ v̄n

0

Vωρ(dv)

= Vωρ(v̄)

< ∞

where v̄ = {v̄l, v̄1, ..., v̄n}.

Proposition F.1 Under Assumptions 1 and 2, the fraction of firms in industry ω with cost greater than c
is

e−(c/Cω)γ

where

Cω =

 ∑
ρ∈%(ω)

κωρBωρ

(t∗x)α
ρ
R(tl)

αρL
∏
ω̂∈Ω̂ρ

C
αρω̂
ω̂

−γ
− 1
γ

(3)

t∗x =

(∫ ∞
1

t−ζ
R

x dT (tx)

)−1/ζR

κωρ =

∫ ∞
0

...

∫ ∞
0

1 {Cωρ (vl, v1, ..., vn) ≤ 1} Vωρ(dv)
∏
ω̂∈Ω̂ρ

Γ

(
1−

βρω̂
ζω̂

)
Γ

(
1− ζω̂

γ

)βρω̂/ζω̂

Proof. Consider recipe ρ that uses labor and intermediate inputs Ω̂ρ = {ω̂1, ..., ω̂n}. Let Hωρ(c) be the
arrival rate of a technique that delivers cost weakly less than c. Then 1− Fωρ(c) is the probability that no
such techniques arrive, or e−Hωρ(c). To find Hωρ(c), we consider first a technique of recipe ρ for which the
common components of input-augmenting productivities are bl, b1, ..., bn. To find the probability that the
technique delivers unit cost weakly less than c we integrate over the effective cost of all inputs:∫ ∞

0

...

∫ ∞
0

1 {Cωρ (λl, λ1, ..., λn) ≤ c}
n∏
k=1

e−(λkbk/Λω̂k)
ζω̂k b

ζω̂k
k

Λ
ζω̂k
ω̂k

ζω̂kλ
ζω̂k−1

k dλk

To find Hωρ(c), we integrate over the arrival of such techniques:

Hωρ(c) =

∫ ∞
0

...

∫ ∞
0

1 {Cωρ (λl, λ1, ..., λn) ≤ c}

(
n∏
k=1

e−(λkbk/Λωω̂k)
ζω̂k b

ζω̂k
k

Λ
ζω̂k
ωω̂k

ζω̂kλ
ζω̂k−1

k dλk

)
Bωρ(db)

Using the definition of λl = tl
bl

and the homogeneity of the cost function, this is

Hωρ(c) =

∫ ∞
0

...

∫ ∞
0

1

{
Cωρ

(
tl
blc
,
λ1

c
, ...,

λn
c

)
≤ 1

}( n∏
k=1

e−(λkbk/Λω̂k)
ζω̂k b

ζω̂k
k

Λ
ζω̂k
ω̂k

ζω̂kλ
ζω̂k−1

k dλk

)
Bωρ(db)

It will be useful to make the changes of variables vk = λk/c, vl = tl
cbl

, and mj = (λlbl/Λω̂l)
ζω̂j to express

Hωρ as

Hωρ(c) =

∫ ∞
0

...

∫ ∞
0

1 {Cωρ (vl, v1, ..., vn) ≤ 1}Bωρ
(
tl
c

)−βρl  n∏
k=1

(
m

1/ζω̂k
k Λω̂k
c

)−βρω̂k
e−mkdmk

Vωρ(dv)
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or more simply,

Hωρ(c) = κ̃ωρBωρt
−βρl
l Λ

−βρω̂1

ω̂1
...Λ
−βρω̂n
ω̂n

cγ

where

κ̃ωρ ≡
∫ ∞

0

...

∫ ∞
0

1 {Cωρ (vl, v1, ..., vn) ≤ 1} Vωρ(dv)

n∏
k=1

∫ ∞
0

m
−βρω̂k/ζω̂k
k e−mkdmk

Assumptions 1 and 2e guarantee that κ̃ωρ is finite: the first integral is finite because of Lemma 4, and the
subsequent integrals can be written as∫ ∞

0

m
−βρω̂k/ζω̂k
ω̂k

e−mkdmk = Γ

(
1−

βρω̂k
ζω̂k

)
Using the fact that 1− Fω(c) =

∏
ρ∈%(ω) [1− Fωρ(c)] =

∏
ρ∈%(ω) e

−Hωρ(c), we have

1− Fω(c) = e−(c/Cω)γ

where Cω is defined as

Cω ≡

 ∑
ρ∈%(ω)

κ̃ωρBωρt
−βρl
l Λ

−βρω̂1

ω̂1
...Λ
−βρω̂n
ω̂n

−1/γ

(4)

To complete the proof, we will derive expressions for Λω̂ in terms of Cω̂ and substitute into (4). Note first
that for each ω̂ ∈ Ω̂ρ we have∫ ∞

0

c−ζωdFω(c) =

∫ ∞
0

c−ζωC−γω γcγ−1e−(c/Cω)γdc = C−ζωω

∫ ∞
0

v−
ζω
γ e−vdv

= C−ζωω Γ

(
1− ζω

γ

)
therefore Lemma 3 implies

Λω̂ =

 t∗xCω̂Γ
(

1− ζR
γ

)−1/ζR
ω̂ ∈ Ω̂R

Cω̂Γ
(

1− ζH
γ

)−1/ζH
ω̂ ∈ Ω̂H

Plugging this into (4), defining κωρ ≡ κ̃ωρ
∏
ω̂∈Ω̂ρ Γ

(
1− ζω̂

γ

)βρω̂/ζω̂
, and using αρω̂ =

βρω̂
γ gives the result.

F.2 Factor Shares

Consider a firm in industry ω. If, in equilibrium, the firm uses a technique of recipe ρ (that uses labor and
intermediate inputs Ω̂ρ = {ω̂1, ..., ω̂n}) with input-augmenting productivities b = {bl, b1, ..., bn}, effective cost
of intermediate inputs λ = {λ1, ..., λn}, then its payment to supplier of a relationship-specific input ω̂i with
wedge txs is

psxs = t−1
xs λiCωρω̂i(λ)yj , ωi ∈ ΩρR

psxs = λiCωρω̂i(λ)yj , ωi ∈ ΩρH

wl = λlCωρω̂i (λl, λ1, ..., λn) yj +
∑
ω̂∈Ω̂ρR

(1− t−1
xs )λiCωρω̂i(λ)yj

where Cωρl and Cωρω̂ denote the partial derivatives of the cost function with respect to the cost of labor and
to the cost of input ω̂ respectively.

We characterize average revenue shares of each input in several intermediate steps.
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Effective Cost Shares

For any technique of recipe ρ that delivers cost c, let Dωρ(c) denote the probability that the technique is
actually chosen by the firm.7

Lemma F.3 Under Assumptions 1 and 2, the average effective cost share of the ith intermediate input and
of labor among firms that, in equilibrium, use recipe ρ and have unit cost weakly less than c0 are, respectively,

E

[
λiCωρω̂i (λ)

Cωρ (λ)

∣∣∣∣ c ≤ c0, ρ] =

∫
v

viCωρω̂i (v)

Cωρ(v) 1 {Cωρ(v) ≤ c0}Dωρ (Cωρ(v))Vωρ(dv)∫
v

1 {Cωρ(v) ≤ c0}Dωρ (Cωρ(v))Vωρ(dv)
(5)

E

[
λlCωρl (λ)

Cωρ (λ)

∣∣∣∣ c ≤ c0, ρ] =

∫
v
vlCωρl(v)
Cωρ(v) 1 {Cωρ(v) ≤ c0}Dωρ (Cωρ(v))Vωρ(dv)∫
v

1 {Cωρ (v) ≤ c0}Dωρ (Cωρ (v))Vωρ(dv)
(6)

Proof. For a firm in industry ω, the measure of the arrival rate of techniques of recipe ρ with b =
{bl, b1, ..., bn} and λ = {λ1, ..., λn} that deliver cost weakly less than c0 is

1 {Cωρ (λ) ≤ c0}
(
b1λ1

Λω̂1

)ζω̂1 ζω̂1

λ1
e−(λ1b1/Λω̂1)

ζω̂1
dλ1...

(
bnλn
Λω̂n

)ζω̂n ζω̂n
λn

e−(λnbn/Λω̂n )
ζω̂n dλnBωρ(db) (7)

Such a technique is actually used by the firm with probability Dωρ (Cωρ(λ)). To find the density of b and
λ among firms in industry ω that choose to use a technique of recipe ρ that delivers cost weakly less than
c0 we simply divide the product of (7) and Dωρ (Cωρ(λ)) by the integral over all such combinations of

input-augmenting productivities and effective cost, so that the conditional expectation of
λiCωρω̂i (λ)

Cωρ(λ) is

E

[
λiCωρω̂i (λ)

Cωρ(λ)

∣∣∣∣ c ≤ c0, ρ] =

∫
b

∫
λ

λiCωρω̂i (λ)

Cωρ(λ) 1 {Cωρ(λ) ≤ c0}Dωρ (Cωρ(λ))

×
(
b1λ1

Λω̂1

)ζω̂1 ζω̂1

λ1
e−(λ1b1/Λω̂1)dλ1...

(
bnλn
Λω̂n

)ζω̂n ζω̂n
λn
e−(λnbn/Λω̂n )dλnBωρ(db)∫

b

∫
λ

1 {Cωρ(λ) ≤ c0}Dωρ (Cωρ(λ))

×
(
b1λ1

Λω̂1

)ζω̂1 ζω̂1

λ1
e−(λ1b1/Λω̂1)dλ1...

(
bnλn
Λω̂n

)ζω̂n ζω̂n
λn
e−(λnbn/Λω̂n )dλnBωρ(db)

Making the change of variables of variables mk = (λkbk/Λω̂k)
ζω̂k for each k and using the definition λl = tl

bl
gives

E

[
λiCωρω̂i(λ)

Cωρ(λ)

∣∣∣∣ c ≤ c0, ρ] =

∫
b

∫
m

Λω̂i
bω̂i

m
1/ζω̂i
i Cωρω̂i

(
tl
bl
,{Λ
bm

1/ζ}
)

Cωρ
(
tl
bl
,{Λ
bm

1/ζ}
) 1

{
Cωρ

(
tl
bl
,
{

Λ
bm

1/ζ
})
≤ c0

}
×Dωρ

(
Cωρ

(
tl
bl
,
{

Λ
bm

1/ζ
}))

e−m1dm1...e
−mndmnBωρ(db)∫

b

∫
m

1
{
Cωρ

(
tl
bl
,
{

Λ
bm

1/ζ
})
≤ c0

}
×Dωρ

(
Cωρ

(
tl
bl
,
{

Λ
bm

1/ζ
}))

e−m1dm1...e
−mndmnBωρ(db)

where Cωρ
(
tl
bl
,
{

Λ
bm

1/ζ
})

= Cωρ
(
tl
bl
,

Λω̂i
bi
m

1/ζω̂i
i , ...,

Λω̂n
bn

m
1/ζω̂n
n

)
. A further change of variables vl = tl

bl
and

vk =
Λω̂k
bk
m

1/ζω̂k
k gives

E

[
λiCωρω̂i(λ)

Cωρ(λ)

∣∣∣∣ c ≤ c0, ρ] =

∫
v

∫
m

vω̂iCωρω̂i (v)

Cωρ(v) 1 {Cωρ(v) ≤ c0}Dωρ (Cωρ(v)) e−m1dm1...e
−mndmn

×Bωρt
−βρl
l

(
Λω̂1m

1/ζω̂1
1

)βρω̂1
...
(

Λω̂nm
1/ζω̂n
n

)βρω̂n Vωρ(dv)∫
v

∫
m

1 {Cωρ(v) ≤ c0}Dωρ (Cωρ(v)) e−m1dm1...e
−mndmn

×Bωρt
−βρl
l

(
Λω̂1m

1/ζω̂1
1

)βρω̂1
...
(

Λω̂nm
1/ζω̂n
n

)βρω̂n Vωρ(dv)

7While it is not relevant for the proof, it turns out that Dωρ(c) = 1− Fω(c), the overall probability that a firm’s
best technique delivers cost c.
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Canceling common terms from the numerator and denominator gives (5). (6) can be derived using identical
logic.

Lemma F.4 ∫
v

viCωρω̂i(v)

Cωρ(v)
1 {Cωρ(v) ≤ c0}Dωρ (Cωρ(v))Vωρ(dv) = βρω̂iAωρ(c0) (8)∫

v

vlCωρl(v)

Cωρ (v)
1 {Cωρ(v) ≤ c0}Dωρ (Cωρ(v))Vωρ(dv) = βρLAωρ (c0) (9)

where Aωρ(c0) is a constant

Proof. For the proof of this lemma we need some additional notation. Define the function Kωρ (c; c0) =∫ c0
c

1
c̃Dωρ (c̃) dc̃. Define the function ψ (v−i, c) to be the solution to Cωρ (v−i, ψ (v−i, c)) = c if such a solution

exists, or take the value of zero no such solution exists, i.e., if the v−i are too large for a solution to exist.

Finally, define Vωρ,−i (v−i) ≡ v
βρl
l

∏
k 6=i v

βρω̂k
k and Vωρ,l (v−l) ≡

∏
k v

βρω̂k
k

We can express the left hand side of (8) as

LHS =

∫
v

viCωρω̂i(v)

Cωρ(v)
1 {Cωρ(v) ≤ c0}Dωρ (Cωρ(v))Vωρ(dv)

=

∫
v−i

∫
vi

viCωρω̂i(v)

Cωρ(v)
1 {Cωρ(v) ≤ c0}Dωρ (Cωρ(v))βρω̂iv

βρω̂i
−1

i dviVωρ,−i (dv−i) (10)

We can use the definition of ψ (v−i, c), integrate by parts, and then use the definition of ψ (v−i, c) again to
express the innermost integral as∫

vi

viCωρω̂i(v)

Cωρ(v)
1 {Cωρ(v) ≤ c0}Dωρ (Cωρ(v))βρω̂iv

βρω̂i
−1

i dvi

=

∫ ψ(v−i,c0)

0

viCωρω̂i(v)

Cωρ(v)
Dωρ (Cωρ(v))βρω̂iv

βρω̂i
−1

i dvi

=

∫ ψ(v−i,c0)

0

Cωρω̂i(v)

Cωρ(v)
Dωρ (Cωρ(v))βρω̂iv

βρω̂i
i dvi

= −Kωρ (Cωρ(v); c0)βρω̂iv
βρω̂i
i

∣∣∣∣ψ(v−i,c0)

0

+

∫ ψ(v−i,c0)

0

Kωρ (Cωρ(v); c0)
(
βρω̂i
)2
v
βρω̂i
−1

i dvi

=

∫ ψ(v−i,c0)

0

Kωρ (Cωρ(v); c0)
(
βρω̂i
)2
v
βρω̂i
−1

i dvi

= βρω̂i

∫
vi

1 {Cωρ(v) ≤ c0}Kωρ (Cωρ(v); c0)βρω̂iv
βρω̂i
−1

i dvi

Plugging this back into (10) gives

LHS = βρω̂i

∫
v

1 {Cωρ (v) ≤ c0}Kωρ (Cωρ (v) , c0)Vωρ(dv)

The derivation of (9) follows identical logic.

Proposition F.2 Under Assumptions 1 and 2, the average effective cost share of the ith intermediate input
and of labor among firms that, in equilibrium, use recipe ρ and have unit cost weakly less than c0 are,
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respectively,

E

[
λiCωρω̂i (λ)

Cωρ(λ)

∣∣∣∣ c ≤ c0, ρ] = αρω̂i

E

[
λlCωρl(λ)

Cωρ(λ)

∣∣∣∣ c ≤ c0, ρ] = αρL

Proof. Lemma 5 gives

E

[
λiCωρω̂i (λ)

Cωρ(λ)

∣∣∣∣ c ≤ c0, ρ] =

∫
v

viCωρω̂i (v)

Cωρ(v) 1 {Cωρ(v) ≤ c0}Dωρ (Cωρ(v))Vωρ(dv)∫
v

1 {Cωρ(v) ≤ c0}Dωρ (Cωρ(v))Vωρ (dv)

Lemma 6 implies that the numerator equals βρωiAωρ(c0). The homogeneity of the cost function implies that

1 =
vlCωρl(v)
Cωρ(v) +

∑
i

viCωρω̂i (v)

Cωρ(v) , so the denominator equals βρl Aωρ(c0) +
∑
i β

ρ
ω̂i
Aωρ(c0) = γAωρ (c0). Together

these imply that E
[
λiCωρω̂i (λ)

Cωρ(λ)

∣∣∣ c ≤ c0, ρ] = αρω̂i . Identical logic implies that E
[
λlCωρl(λ)
Cωρ(λ)

∣∣∣ c ≤ c0, ρ] = αρL.

Actual Cost Shares

Lemma F.5 Among firms that produce ω that, in equilibrium, use a supplier for relationship-specific input
ω̂ ∈ ΩρR that delivers effective cost λω̂, the harmonic average of the wedge is

E
[
t−1
xs |λω̂

]−1
= t̄x ≡

(∫ ∞
1

t−1
x dT̃ (tx)

)−1

where T̃ (tx) ≡
∫ tx
1

t−ζRdT (t)∫∞
1
t−ζRdT (t)

.

Proof. Consider all suppliers drawn by j to supply input ω̂ for a technique of recipe ρ with common
component of input-augmenting productivity b. The effective cost delivered by a supplier is txsps

zsb
where

ps = cs is the price charged by the supplier. Given the match-specific productivity zs and wedge txs,
the probability that the supplier’s cost is low enough to deliver an effective cost weakly less than λ is the
probability that cs is small enough to so that txscs

zsb
< λ, i.e., cs < λbzs/txs, or 1−Fω̂ (λbzs/txs). Integrating

over possible values of z and tx, the arrival rate of suppliers that deliver effective cost lower than λ is∫∞
0

∫∞
1

[1− Fω̂ (λbz/t)] dT (t)ζRz
−ζR−1dz. Second, the arrival rate of suppliers that deliver effective cost less

than λ and for which the wedge is weakly less than tx is
∫∞

0

∫ tx
1

[1− Fω̂ (λbz/t)] dT (t)ζRz
−ζR−1dz. Together,

these imply that, among suppliers who deliver effective cost less than λ, the probability that the wedge is
less than tx is

Pr (txs < tx|λs ≤ λ, b) =

∫∞
0

∫ tx
1

[1− Fω̂ (λbz/t)] dT (t)z−ζR−1dz∫∞
0

∫∞
1

[1− Fω̂ (λbz/t)] dT (t)z−ζR−1dz

=

∫∞
0

∫ tx
1

[1− Fω̂(u)]λζRt−ζRdT (t)u−ζR−1du∫∞
0

∫∞
1

[1− Fω̂(u)]λζRt−ζRdT (t)u−ζR−1du

=

∫ tx
1
t−ζRdT (t)∫∞

1
t−ζRdT (t)

= T̃ (tx)

where the second line uses the change of variables u = λbz/t. With this, we have that among suppliers that
deliver effective cost weakly greater than λ, the harmonic average of wedges is

t̄x ≡ E
[
t−1
xs |λs ≤ λ, b

]−1
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Since t̄x does not depend on λ, the expectation must be the same for each λ, b, i.e.,

t̄x = E
[
t−1
xs |λs, b

]−1

Finally, this equation holds regardless of whether s is selected as a supplier. In other words,

E
[
t−1
xs |λ, b

]
= E

[
t−1
xs |λ, b, s selected as supplier

]
= t̄−1

x

Proposition F.3 Among firms in industry ω that, in equilibrium, use recipe ρ and have unit cost c:

� the average share of expenditures spent on input ω̂ ∈ ΩρR is 1
t̄x
αρω̂

� the average share of expenditures spent on input ω̂ ∈ ΩρH is αρω̂

� the average share of expenditures spent on input ω̂ ∈ ΩρH is αρL + (1− 1
t̄x

)αρR

Proof. Consider a relationship specific-input ω̂. Note first that the share of j’s expenditures spent on ω̂

is 1
tω̂x

λω̂Cωρω̂(λ)
Cωρ(λ) . Note that conditional on λi, tω̂x is independent of any other feature of the firm’s sourcing

decision. We therefore have, by iterated expectations,

E

[
1

tω̂x

λω̂Cωρω̂(λ)

Cωρ(λ)

∣∣∣∣ c, ρ] = E

[
1

txω̂

λω̂Cωρω̂(λ)

Cωρ(λ)

∣∣∣∣ c, ρ]
= E

{
E

[
1

txω̂

λω̂Cωρω̂(λ)

Cωρ(λ)

∣∣∣∣ c, ρ, b, λ]∣∣∣∣ c, ρ}
= E

{
E

[
1

txω̂

∣∣∣∣ c, ρ, b, λ] λω̂Cωρω̂(λ)

Cωρ(λ)

∣∣∣∣ c, ρ}
= E

[
1

txω̂

∣∣∣∣ c, ρ, b, λ]E{ λω̂Cωρω̂(λ)

Cωρ(λ)

∣∣∣∣ c, ρ}
=

1

t̄x
αρω̂

The expression for homogeneous inputs follows directly from Proposition 2. The expression for labor follows
from the fact that the cost shares sum to 1.

Corollary F.1 Among firms in industry ω that, in equilibrium, use recipe ρ:

� the average and aggregate shares of expenditures spent on input ω̂ ∈ ΩρR are both 1
t̄x
αρω̂

� the average and aggregate shares of expenditures spent on input ω̂ ∈ ΩρH are αρω̂

� the average and aggregate shares of expenditures spent on input ω̂ ∈ ΩρH are αρL + (1− 1
t̄x

)αρR

Proof. This follows directly from the previous corollary by integrating over realizations of c.
We next turn to revenue shares.

Proposition F.4 Among firms in industry ω that, in equilibrium, use recipe ρ and have unit cost c:

� the average share of revenue spent on input ω̂ ∈ ΩρR is 1
t̄x
αρω̂E[ cp̄ |c, ρ]

� the average share of expenditures spent on input ω̂ ∈ ΩρH is αρω̂E[ cp̄ |c, ρ]

� the average share of expenditures spent on input ω̂ ∈ ΩρH is
(
αρL + (1− 1

t̄x
)αρR

)
E[ cp̄ |c, ρ]
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Proof. This proof closely follows the proof of cost shares. Let p̄j we the average price firm j receives from
selling its good. This is a weighted average of cj , the price paid by other firms that use j as a supplier, and
ε
ε−1cj , the price paid by the household. Consider a relationship-specific input ω̂. j’s revenue share of input

ω̂ is c
p̄j

1
tω̂x

λω̂Cωρω̂(λ)
Cωρ(λ) . Note that conditional on cj , p̄j is independent of any feature of the firm’s sourcing

decision, and conditional on λi, tω̂x is independent of any other feature of the firm’s sourcing decision.
Putting the pieces together, we have

E

[
c

p̄

1

tω̂x

λω̂Cωρω̂(λ)

Cωρ(λ)

∣∣∣∣ c, ρ] = E

[
c

p̄

1

txω̂

λω̂Cωρω̂(λ)

Cωρ(λ)

∣∣∣∣ c, ρ]
= E

{
E

[
c

p̄

1

txω̂

λω̂Cωρω̂(λ)

Cωρ(λ)

∣∣∣∣ c, ρ, b, λ]∣∣∣∣ c, ρ}
= E

{
E

[
c

p̄

∣∣∣∣ c, ρ, b, λ]E [ 1

txω̂

∣∣∣∣ c, ρ, b, λ] λω̂Cωρω̂(λ)

Cωρ(λ)

∣∣∣∣ c, ρ}
= E

[
c

p̄

∣∣∣∣ c, ρ, b, λ]E [ 1

txω̂

∣∣∣∣ c, ρ, b, λ]E{ λω̂Cωρω̂(λ)

Cωρ(λ)

∣∣∣∣ c, ρ}
= E

[
c

p̄

∣∣∣∣ c, ρ] 1

t̄x
αρω̂

The derivation for homogeneous inputs is the same but without the wedge (i.e., setting the wedge to 1). The
derivation for labor is similar.

Corollary F.2 Among firms in industry ω that, in equilibrium use recipe ρ, the following expressions hold:

0 = E

 sjR
αρR
t̄x

− sjH
αρH

∣∣∣∣∣∣ ρ


0 = E

[
sjR + sjL
αρR + αρL

− sjH
αρH

∣∣∣∣ ρ]
Proof. This follows from rearranging the expressions in the previous proposition and integrating over c.

F.3 Counterfactuals

Given the household’s preferences, let Pω be the ideal price index for the consumption aggregate for industry

ω and let P be the overall ideal price index. These satisfy Pω ≡
(∫ Jω

0
p1−ε
j dj

) 1
1−ε

and P =
(∑

ω υωP
1−η
ω

) 1
1−η .

Since each firm charges a fixed markup over marginal cost in sales to the household, firm j in industry
ω would charge a price of pj = ε

ε−1cj . Thus the price index for ω satisfies

P 1−ε
ω =

∫ Jω

0

(
ε

ε− 1
cj

)1−ε

dj =

(
ε

ε− 1

)1−ε

Jω

∫ ∞
0

c1−εdFω(c)

Proposition 1 gives Fω(c) = 1− e−(c/Cω)γ . Integrating yields
∫∞

0
c1−εdFω(c) = Γ

(
1− ε−1

γ

)
C1−ε
ω , which

implies that the industry price index can be expressed as

Pω =
ε

ε− 1
J

1
1−ε
ω Γ

(
1− ε− 1

γ

) 1
1−ε

Cω

The overall price index is therefore

P =
ε

ε− 1

(∑
ω

υωJ
η−1
ε−1
ω Γ

(
1− ε− 1

γ

) η−1
ε−1

C1−η
ω

) 1
1−η
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To find total profit, note that j’s profit (which comes only from sales to the household because firm-to-

firm sales are priced at marginal cost) is πωj = uωj(pωj − cωj). Using uωj = Uυω
(
Pω
P

)−η (pωj
Pω

)−ε
=

UPυω
(
Pω
P

)1−η (pωj
Pω

)1−ε
1
pj

and cωj = ε−1
ε pωj , this is πωj = UPυω

(
Pω
P

)1−η (pωj
Pω

)1−ε
1
ε . Total profit can be

found by integrating over all firms

Π =
∑
ω

∫ Jω

0

πωjdj =
∑
ω

∫ Jω

0

UP

(
υωPω
P

)1−η (
pωj
Pω

)1−ε
1

ε
dj =

1

ε
UP

Total household income is profit plus wage income, while its expenditure is UP , so its budget is UP =
Π + wL = 1

εUP + wL, or (normalizing the wage to unity)

U =
ε

ε− 1

w

P
L =

(∑
ω

υωJ
η−1
ε−1
ω Γ

(
1− ε− 1

γ

) η−1
ε−1

C1−η
ω

) 1
η−1

L

Proposition F.5 A change in the distribution of relationship-specific intermediate input wedges from T to
T ′ leads to a change in household utility that can be summarized by

U ′

U
=

(∑
ω

HHω

(
C ′ω
Cω

)1−η
) 1
η−1

(11)

and the change in industry cost indexes satisfy the following system of equations

C ′ω
Cω

=

 ∑
ρ∈%(ω)

Rωρ

( t∗x′
t∗x

)αρR ∏
ω̂∈Ω̂ρ

(
C ′ω̂
Cω̂

)αρω̂−γ−
1
γ

(12)

Proof. The share of the household’s spending on goods from ω is

HHω =
υωP

1−η
ω

P 1−η =
υω

(
ε
ε−1

)1−η
J

1−η
1−ε
ω Γ

(
1− ε−1

γ

) 1−η
1−ε

C1−η
ω

P 1−η (13)

Using U = ε
ε−1L/P and rearranging gives

HHω =
υωJ

1−η
1−ε
ω Γ

(
1− ε−1

γ

) 1−η
1−ε

C1−η
ω

(U/L)η−1

Under the counterfactual, we have

(U ′/L)η−1 =
∑
ω

υωJ
η−1
ε−1
ω Γ

(
1− ε− 1

γ

) η−1
ε−1

(C ′ω)1−η

=
∑
ω

υωJ
η−1
ε−1
ω Γ

(
1− ε− 1

γ

) η−1
ε−1

C1−η
ω

(
C ′ω
Cω

)1−η

=
∑
ω

HHω(U/L)η−1

(
C ′ω
Cω

)1−η

Rearranging gives (11).

We next show that the share of revenue is Rωρ = κωρBωρ

(
t
α
ρ
L
l (t∗x)α

ρ
R
∏
ω̂∈Ω̂ρ

C
α
ρ
ω̂

ω̂

Cω

)−γ
, where we define
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Cωρ ≡ κωρ
(
t
αρL
l (t∗x)α

ρ
R
∏
ω̂∈Ω̂ρ (Cω̂)

αρω̂
)γ

, so that Fωρ(c) = 1− e−(c/Cωρ)γ . This follows from two facts. First,

among producers of ω that have efficiency q, the fraction that use recipe ρ is:

Pr(ρ|c, ω) =

(∏
ρ̃6=ρ [1− Fωρ̃(c)]

)
F ′ωρ(c)

F ′ω(c)
=
F ′ωρ(c)/ [1− Fωρ(c)]
F ′ω(c)/[1− Fω(c)]

= κωρBωρ

(
t
αρL
l (t∗x)α

ρ
R
∏
ω̂∈Ω̂ρ C

αρω̂
ω̂

Cω

)−γ

where the last equality follows from Fωρ(c) = 1 − e
−κωρBωρ

(
t
α
ρ
L
l (t∗x)α

ρ
R
∏
ω̂∈Ω̂ρ

C
α
ρ
ω̂

ω̂

)−γ
cγ

and Fω(c) = 1 −
e−(c/Cω)γ . The second fact is that, conditional on c, revenue is independent of the recipe chosen by a firm
or any other feature of the firm’s sourcing decisions.

Finally, we have that the counterfactual industry cost indexes {C ′ω} satisfy

C ′ω =

 ∑
ρ∈%(ω)

κωρBωρ

tαρLl (t∗x
′)α

ρ
R

∏
ω̂∈Ω̂ρ

(C ′ω̂)
αρω̂

−γ
− 1
γ

=

 ∑
ρ∈%(ω)

κωρBωρ

tαρLl (t∗x)α
ρ
R

∏
ω̂∈Ω̂ρ

(Cω̂)
αρω̂

−γ( t∗x′
t∗x

)αρR ∏
ω̂∈Ω̂ρ

(
C ′ω̂
Cω̂

)αρω̂−γ
− 1
γ

=

 ∑
ρ∈%(ω)

RωρC
−γ
ω

( t∗x′
t∗x

)αρR ∏
ω̂∈Ω̂ρ

(
C ′ω̂
Cω̂

)αρω̂−γ
− 1
γ

Rearranging yields (12).

G Additional Structural Results

G.1 Counterfactual: Robustness to different parameter values

Figures G.1 and G.2 show the results from the welfare counterfactual for different values of γ and ζ.
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Figure G.1 Welfare counterfactual for different elasticities γ

Average age of pending civil cases in high court
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The figure shows the counterfactual increase in U for each state for different values of γ. For
∆U < 5% the differences are so small that the markers are overlapping.

Figure G.2 Welfare counterfactual for different elasticities ζ
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The figure shows the counterfactual increase in U for each state for different values of ζ.
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G.2 Fineness of recipes

This subsection explores the robustness of our estimates to the choice of how finely to define recipes. In our
clustering procedure that defines recipes we use the prediction strength method of Tibshirani and Walther
(2005) to determine the number of clusters in each industry. Similar to cross-validation, the prediction
strength method divides the sample into two subsamples (A and B) and assesses the predictive power of
clusters obtained from each subsample. In our benchmark implementation that we use for the results in
the paper, we choose a threshold parameter of 0.95. Here, we explore how much this choice matters. To
do so, we run linear regressions that most closely mimic the structural regressions (cf. the GMM moment
conditions in Proposition 5):

log

(
sρdR
sρdH

)
= β · (Court quality)d + νρ + ερd

where sρdR (and sρdH ) is the weighted average sales share of relationship-specific (homogeneous) inputs of
plants that produce using recipe ρ in state d (weights are the probability weights as in the GMM procedure),
and νρ is a set of fixed effects. The estimate for β has a negative sign: Among plants that use a particular
recipe, the sales shares of relationship-specific inputs is low compared to homogeneous inputs when courts
are slow (i.e., when the average age of pending cases is high). The same holds when we instrument for court
quality with the log age of court.

Figure G.2 shows that the point estimates for the regression coefficients do not change much with the
threshold parameter. This is because the procedure identifies a similar number of recipes for a relatively
broad range of threshold parameters.

44



-.
1

-.
08

-.
06

-.
04

-.
02

R
eg

re
ss

io
n 

co
ef

fic
ie

nt

.9 .91 .92 .93 .94 .95 .96 .97 .98 .99
Prediction strength parameter

beta_ols 95% CI
beta_iv 95% CI

(a) Regression Coefficients

26
60

0
26

80
0

27
00

0
27

20
0

27
40

0
# 

R
ec

ip
es

.9 .91 .92 .93 .94 .95 .96 .97 .98 .99
Prediction strength parameter

(b) Number of Recipes

Figure G.3 Regression coefficients & number of recipes for different levels of recipe fineness

G.3 Identifying Recipes and Distortions: Monte Carlo Exercises

An important part of our exercise is to separate recipes from distortions. Fundamentally, identification is
provided by the assumption that recipe production functions are invariant across states, whereas distortion
parameters τd are state-specific. At the same time, our quantitative exercise also relies on a way to assign
plants to recipes (which we do using the clustering algorithm), and on a way to determine the number of
recipes in that procedure.

In this section, we explore the implications of the choice of the number of recipes, i.e. the number
of clusters in the clustering procedure. We first discuss what could go wrong when choosing the “wrong”
number of clusters, and illustrate these considerations with Monte Carlo simulations of small economies of
our model. If the number of recipes we allow for is sufficiently large or the choice of recipes is uncorrelated
with distortions, our estimator is likely to be consistent. We then perform a Monte Carlo study to assess
the small-sample properties of our estimator (for the sample size we have).

G.3.1 In large samples

Our problem is closely related to the group fixed effect estimator of Bonhomme and Manresa (2015). Bon-
homme and Manresa study the asymptotic properties (including consistency) of an estimator that estimates
simultaneously group memberships, group fixed effects, and coefficients on observable characteristics in a
linear panel model. In fact, our moment conditions can be mapped into a extension of their model (see
equation 7 of their paper). Bonhomme and Manresa propose an iterative algorithm similar to ours, and
show that if the number of groups is correct, the estimation of the covariates is consistent. In our context,
this would mean that if we have the right number of recipes, our estimates of the distortions would be
consistent. There are some small differences between our approach and that of Bonhomme and Manresa, so
we use Monte Carlo simulations to confirm that this property does indeed seem to hold in our model (see
discussion below).

To think about the properties of our estimator under the wrong number of clusters, we draw from
another closely related paper, Moon and Weidner (2015), who study least squares estimators in panel models
with a factor structure with an unknown number of factors, as well as the discussion in section S3 of the
supplementary Appendix in Bonhomme and Manresa (2015), which also draws on Moon and Weidner (2015).
In those models, if one allows for too few groups/factors, estimates of the distortions may not be consistent,
whereas if one allows for too many groups/factors, the estimates of the distortions will be consistent, although
this comes at the cost of reduced power. Our model is very similar, but does not map exactly into that of
Moon and Weidner, so we cannot apply their analytical results directly to our context. Nevertheless, Monte
Carlo simulations of our model confirm that these properties give a good description of the performance of
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(c) Four clusters per product

Figure G.4 MC results: Number of observations not skewed across states

The simulated economy has two products, one which is relationship-specific, the other one
homogeneous. For each product there are two recipes; one intensive in the homogeneous
good, the other one in the relationship-specific good. There are 21 states, each having the
same number of producers using each recipe and producing each product, with distortions t̄
as indicated on the horizontal axis. The average estimated t̄ from large samples is shown on
the vertical axis.

our estimator.
The bottom line is that if the number of recipes we allow for is sufficiently large (greater or equal than the

actual number of recipes), our estimator is likely to be consistent. Allowing for too many recipes, however,
comes at the cost of precision, as the t̄x are estimated from within-recipe across-state variation in the shares
of materials expenditure in sales, and with more recipes, there are on average fewer observations per recipe.

Here is the intuition: imagine a world with two recipes, one relying more on relationship-specific inputs
(“R-inputs”) than the other, and two states, one with no distortions and one for which R-inputs are distorted.
Assume that we posited a single recipe, i.e., we assign all plants as belonging to the same recipe. If the
number of producers using each recipe was the same across states, our estimator would still be consistent:
the average plant in the distorted state would have a lower cost share on R than the average plant in the
undistorted state by exactly as much as the distortion (because the weights in the averages are the same).8

On the other hand, if the more distorted state had relatively more firms using the low-R recipe (perhaps due
to technology differences), then the assumption of a single recipe would lead us to overstate the distortions:
some of the difference in cost shares on R is due to a different recipe mix, but the estimator would attribute
it to larger distortions.

In contrast, if we allow for more recipes than present in the data, the “extra” identified recipe centers will
be chosen in a way that is (asymptotically) orthogonal to the terms that identify the distortion parameters
t̄x (this is a formal result in Moon and Weidner (2015), which, based on our Monte Carlo’s, seems to extend
to our setup). We do, however, lose power, since we identify distortions from variation within recipes across
states, and more recipes mean on average fewer observations in each recipe. In the extreme case in which
there are more recipes than plants (or, a bit less extreme, if no recipe is used in more than one state),
distortions are obviously not identified anymore.

We illustrate this intuition using Monte Carlo experiments on large samples drawn from simulated small
model economies. Each model economy consists of two products (one R, one H) and two recipes for each
product (one intensive in the R good, the other one intensive in the H good). States vary in their distortions.
In Figure G.4 the number of plants using each recipe is the same across states; in Figure G.5 states with
larger distortions also happen to have fewer plants using the R-intensive recipe. We find that allowing for
too few recipes (one, instead of two) leads to bias in the estimate of the distortions when recipe usage is
skewed across states, but not when recipe usage is the same across states. With the right number of recipes
(two) or with too many recipes (four instead of two), no such difference appears.

8Mathematically, let sR,d1
ρ1

= α1/t̄, sR,d1
ρ2

= α2/t̄, sR,d2
ρ1

= α1, sR,d2
ρ2

= α2, then wd1
i = wd2

i implies∑
i w

d1
i s

R,d1
ρi /

∑
i w

d2
i s

R,d2
ρi = 1/t̄.
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(c) Four clusters per product

Figure G.5 MC results: Number of observations skewed across states

Setup as above, but here states that are more distorted (higher t̄) have relatively more
producers using the H-intensive recipe for both products (the most distorted state has about
45% more producers using H-intensive recipes than the least distorted state) .
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(a) Average of four MC simulations
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(b) All four MC simulation results

Figure G.6 MC results using actual number of observations and estimated t̄

The figure shows actual (horizontal axis) vs. estimated (vertical axis) distortions from a
simulated model economy, where the parameters are the point estimates from our benchmark
estimation and the number of simulated plants is the same as in our actual dataset. The left
panel shows average estimated distortions across four runs, the right panel shows estimates
from each individual run (coded in four different colors).

G.3.2 In small samples

To assess the small-sample properties of our estimation procedure, we conduct a Monte Carlo simulation
exercise where we use the actual number of observations in each state and recipe in our data. We simulate
four datasets using the point estimates from our baseline results, and run the estimation and classification
procedure on these simulated data.9 Figure G.6 shows the resulting estimates of t̄. The left panel shows the
average of the estimated t̄ over the four runs. The small-sample bias of our estimation procedure seems to
be relatively small, in particular for smaller distortions. Larger distortions may be upward biased to some
extent. The right panel shows the estimates of each run coded in different colors. Estimates are relatively
similar across the four runs, suggesting that the variance of our estimator is not very large.

G.4 Counterfactual with imports from other states

Our benchmark model economy is closed. In this subsection we explore departures from this assumption.
Unfortunately, there is little publicly available data on trade across states, in particular for trade in interme-

9We do this only four times because each run takes about two days on our server.
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Figure G.7 Counterfactual with fixed cost distribution of imports
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diate inputs. Van Leemput (2016) pieces together several datasets that cover interstate trade for a number
of commodities and modes of transport (based on estimates from the Directorate General of Commercial
Intelligence and Statistics). She estimates that on average (across states) imports of manufacturing goods
are about 10% of domestic production (less for agriculture). Unfortunately, we do not know what fraction
of that is trade in intermediate inputs.

In Figure G.7, we report productivity gains from a counterfactual where we reduce court speed to
the level enjoyed by the fastest court (as in the benchmark), but assume that 10%

10%+100% of suppliers of
each intermediate input is sourced from outside of the state. When reducing contracting frictions, we hold
constant the cost distribution of those imports. As we would expect, the gains from reducing contracting
frictions are a bit smaller than in our baseline counterfactual.

In our view, reality likely lies between the baseline counterfactual and this alternative. Producers from
neighboring states may, in fact, experience cost reductions if contracting frictions are reduced for any producer
in their supply chains. Hence, we believe this counterfactual provides a lower bound for the gains from a
unilateral reduction in distortions in one state.

G.5 Entry

Suppose there is a representative entrepreneur that can choose the measure of firms in each industry according
to a constant elasticity of transformation technology. The mass of firms in each industry {Jω}ω∈Ω must satisfy

the constraint
(∑

ω (Jω/hω)
1+β
β

) β
1+β

≤ 1, where hω indexes the ease of setting up firms in industry ω and β

is an elasticity capturing diminishing returns to entering in any particular industry. This specification nests
exogenous entry at the extreme of β = 0 and free entry at β = ∞. After entry, firms in each industry are
ex-ante identical. Following entry, all firms draw techniques and then production occurs.

In equilibrium, let π̄ω be the average profit of firms in industry ω. The representative entrepreneur takes
{π̄ω}ω∈Ω as given when making entry decisions, and therefore maximizes expected profit

max
{Jω}

∑
ω

Jωπ̄ω subject to

(∑
ω

(Jω/hω)
1+β
β

) β
1+β

≤ 1
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The entry choice is

Jω = hω

(
(hωπ̄ω)

1+β∑
ω′ (hω′ π̄ω′)

1+β

) β
1+β

We next find an expression for average profit in industry ω. π̄ω. We have assumed that prices in buyer-
supplier relationships are set at the supplier’s marginal cost. This means that firms make profit only
from sales to the final consumer. Since price for firm j in industry ω is pωj = ε

ε−1cωj , and final de-

mand is uωj = Uω

(
pωj
Pω

)−ε
= υωU

(
Pω
P

)−η (pωj
Pω

)−ε
, its profit is πωj = (pωj − cωj)uωj = 1

εpωjuωj =

1
ευωPU

(
Pω
P

)1−η (pωj
Pω

)1−ε
. Total profit among firms in industry ω is then

π̄ωJω =

∫
1

ε
υωPU

(
Pω
P

)1−η (
pωj
Pω

)1−ε

dj =
1

ε
υωPU

(
Pω
P

)1−η

In equilibrium, the fraction of firms in industry ω with cost greater than c is e−(c/Cω)γ . Integrating over
possible cost realizations gives

P 1−ε
ω =

∫ (
ε

ε− 1
cωj

)1−ε

dj = Jω

(
ε

ε− 1

)1−ε ∫
c1−εγcγ−1C−γω e−(c/Cω)γdc

=

(
ε

ε− 1

)1−ε

Γ

(
1− ε− 1

γ

)
JωC

1−ε
ω

Putting these together, average profit is

π̄ω =
1

ε

(
ε

ε− 1

)1−η

Γ

(
1− ε− 1

γ

) 1−η
1−ε

P ηUυωJ
1−η
1−ε−1
ω C1−η

ω

Claim G.1 The mass of firms in industry ω satisfies

(
Jω
hω

) 1+β
β

=

(
h

1−η
1−ε
ω υωC

1−η
ω

) 1

1− 1−η
1−ε

β
1+β

∑
ω′

(
h

1−η
1−ε
ω′ υω′C

1−η
ω′

) 1

1− 1−η
1−ε

β
1+β

Proof. We first rearrange the expression for the mass of firms and then use the expression for average profit.

The choice of entry in industry ω is
(
Jω
hω

) 1+β
β

= (hωπ̄ω)1+β∑
ω′ (hω′ π̄ω′ )

1+β , which can be rearranged as

(
Jω
hω

) 1+β
β

=

(
Aω (Jω/hω)

ε−η
1−ε
)1+β

∑
ω′

(
Aω′ (Jω′/hω′)

ε−η
1−ε
)1+β

where Aω ≡ h
1−η
1−ε
ω

(
π̄ω/J

ε−η
1−ε
ω

)
. We want to solve for the denominator. To do this, we can rearrange this

further as

1 =
A1+β
ω (Jω/hω)

ε−η
1−ε (1+β)− 1+β

β∑
ω′

(
Aω′ (Jω′/hω′)

ε−η
1−ε
)1+β
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or

A

1+β

1− ε−η
1−ε β

ω =

[
Aω (Jω/hω)

ε−η
1−ε
]1+β

[∑
ω′

(
Aω′ (Jω′/hω′)

ε−η
1−ε
)1+β

] ε−η
1−ε (1+β)

ε−η
1−ε (1+β)− 1+β

β

Summing across ω and then simplifying the right hand side gives

∑
ω

A

1+β

1− ε−η
1−ε β

ω =

[∑
ω

A1+β
ω (Jω/hω)

ε−η
1−ε (1+β)

] 1

1− ε−η
1−ε β

or more simply ∑
ω

(
Aω (Jω/hω)

ε−η
1−ε
)1+β

=

(∑
ω

A

1+β

1− ε−η
1−ε β

ω

)1− ε−η1−ε β

We therefore have
∑
ω′ (hω′ π̄ω′)

1+β
=

(∑
ω A

1+β

1− ε−η
1−ε β

ω

)1− ε−η1−ε β

and (hωπ̄ω)
1+β

=
[
Aω (Jω/hω)

ε−η
1−ε
]1+β

. so

that (
Jω
hω

) 1+β
β
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[
Aω (Jω/hω)

ε−η
1−ε
]1+β

(∑
ω′ A

1+β

1− ε−η
1−ε β

ω′

)1− ε−η1−ε β

So that solving for Jω/hω gives

(
Jω
hω

) 1+β
β

=
A

1+β

1− ε−η
1−ε β

ω∑
ω′ A

1+β

1− ε−η
1−ε β

ω′

=
A

1

1− 1−η
1−ε

β
1+β

ω∑
ω′ A

1

1− 1−η
1−ε

β
1+β

ω′

Finally, The expression for profits gives Aω ≡ h
1−η
1−ε
ω

(
π̄ω/J

ε−η
1−ε
ω

)
∝ h

1−η
1−ε
ω υωC

1−η
ω , yields the result.

We next show how we can solve for counterfactuals

Claim G.2 When costs change, the change in the mass of firms in industry ω is

(
J ′ω
Jω

) 1+β
β

=

(
C
′

ω/Cω

) 1−η
1− 1−η

1−ε
β

1+β

∑
ωHHω (C ′ω/Cω)
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1− 1−η

1−ε
β

1+β

Proof. Again, using Aω ≡ h
1−η
1−ε
ω

(
π̄ω/J

ε−η
1−ε
ω

)
∝ h

1−η
1−ε
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ω , we have

A′ω
Aω

=
(
C′ω
Cω

)1−η
. We also have

(
J ′ω
hω

) 1+β
β

=
(A′ω)

1

1− 1−η
1−ε

β
1+β∑

ω′ (A
′
ω′)

1

1− 1−η
1−ε

β
1+β

=
A

1

1− 1−η
1−ε

β
1+β

ω

(
A′ω
Aω

) 1

1− 1−η
1−ε

β
1+β

∑
ω′ A

1

1− 1−η
1−ε

β
1+β

ω′

(
A′
ω′

Aω′

) 1

1− 1−η
1−ε

β
1+β
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So dividing by
(
Jω
hω

) 1+β
β

= A

1

1− 1−η
1−ε

β
1+β

ω∑
ω′ A

1

1− 1−η
1−ε

β
1+β

ω′

gives

(
J ′ω
Jω

) 1+β
β

=

(
A′ω
Aω

) 1

1− 1−η
1−ε

β
1+β

∑
ω′

A

1

1− 1−η
1−ε

β
1+β

ω′∑
ω′′ A

1

1− 1−η
1−ε

β
1+β

ω′′

(
A′
ω′

Aω′

) 1

1− 1−η
1−ε

β
1+β

Finally, using Jω = hω

(
(hωπ̄ω)1+β∑
ω′ (hω′ π̄ω′ )

1+β

) β
1+β

implies hω =
(∑

ω′ (hω′ π̄ω′)
1+β
) β

(1+β)2

J
1

β+1
ω π̄

− β
β+1

ω , we have

A

1

1− 1−η
1−ε

β
1+β

ω =

[
h

1−η
1−ε
ω

(
π̄ω/J

ε−η
1−ε
ω

)] 1

1− 1−η
1−ε

β
1+β =

(∑
ω′

(hω′ π̄ω′)
1+β

) β

(1+β)2
1−η
1−ε

J
1

β+1
1−η
1−ε

ω π̄
− β
β+1

1−η
1−ε

ω

(
π̄ω/J

ε−η
1−ε
ω

)
1

1− 1−η
1−ε

β
1+β

=

(∑
ω′

(hω′ π̄ω′)
1+β

) 1
1+β

β
1+β

1−η
1−ε

1− 1−η
1−ε

β
1+β

Jωπ̄ω

Thus we have (
J ′ω
Jω

) 1+β
β

=
(C ′ω/Cω)

1−η
1− 1−η

1−ε
β

1+β∑
ω′

Jω′ π̄ω′∑
ω′′ Jω′′ π̄ω′′

(C ′ω′/Cω′)
1

1− 1−η
1−ε

β
1+β

Finally, since markups are the same across sectors, we have that Jω′ π̄ω′∑
ω′′ Jω′′ π̄ω′′

= HHω, giving the result.

Finally, we show how to use this to compute the aggregate counterfactual

Claim G.3 The change in aggregate productivity of the manufacturing sector is

U ′

U
=

{∑
ω∈Ω

HHω

(
J ′ω
Jω

) η−1
ε−1
(
C ′ω
Cω

)1−η
} 1
η−1

Proof. Utility can be expressed as

U =

{∑
ω∈Ω

Γ

(
1− ε− 1

γ

)
νωJ

η−1
ε−1
ω C1−η

ω

} 1
η−1

U ′ =

{∑
ω∈Ω

Γ

(
1− ε− 1

γ

)
υωJ

η−1
ε−1
ω C1−η

ω

(
J ′ω
Jω

) η−1
ε−1
(
C ′ω
Cω

)1−η
} 1
η−1

U ′

U
=


∑
ω∈Ω

Γ
(

1− ε−1
γ

)
υωJ

η−1
ε−1
ω C1−η

ω∑
ω∈Ω Γ

(
1− ε−1

γ

)
υωJ

η−1
ε−1
ω C1−η

ω

(
J ′ω
Jω

) η−1
ε−1
(
C ′ω
Cω

)1−η


1
η−1

=

{∑
ω∈Ω

HHω

(
J ′ω
Jω

) η−1
ε−1
(
C ′ω
Cω

)1−η
} 1
η−1

This discussion leaves out a few channels. First: we allow for changes in the rates of entry across
industries, but we do not allow for changes in the total entry rate to increase. While it would be easy
to relax this, we think it is reasonable starting point because if entry costs are denominated in labor (as
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suggested by Bollard, Klenow and Li (2016)) then the total rate of entry would be invariant to changes in
aggregate productivity, which raise both the payoff to and opportunity cost of starting a firm by the same
proportion.

We also have ignored any feedback in the change in the number of firms on the number of potential
suppliers drawn to provide a good for a technique. It is possible that the mass of such suppliers would
increase with the measure of firms in the industry.

H Alternative Distortions

In the model presented in the main text, if firm uses a supplier that shirks on quality of the inputs because
of contracting friction, the buyer uses labor to customize the good herself. This increased the total amount
of labor used at all stages of production to produce the firm’s good (by the firm, its suppliers, its suppliers’
suppliers, etc). In this section, we take inspiration from Hsieh and Klenow (2009) and assume that when a
firm draws a supplier of a relationship-specific input, she also draws a random wedge tx from a distribution
T (tx) that is independent of the supplier’s cost. The buyer then behaves as if it must pay a tax at rate tx−1
on expenditures on that input. Like in the baseline, a firm’s shadow cost of each input might differ from
what it pays to the supplier. Here, however, the firm’s shadow unit cost is larger than its actual expenditure
on inputs.

Following the notation of the baseline model presented in Section 3, the effective shadow cost of using a
supplier with input-augmenting productivity zsbω̂(φ) that charges price ps in the presences of the wedge txs
would be txsps

bω̂(φ)zs
. j’s effective shadow cost of input ω̂ for technique φ is the minimum across all potential

suppliers:

λω̂(φ) = min
s∈Sω̂(φ)

txs(φ)ps
bω̂(φ)zs(φ)

.

Similarly, the effective shadow cost of labor when using technique φ is λl(φ) = tlw
bl(φ) . For the remainder, we

normalize the wage to unity, w = 1.
The shadow unit cost delivered by a technique depends on the effective shadow cost of each input.

j’s shadow cost of producing one unit of output using technique φ would be Cωρ
(
λl(φ), {λω̂(φ)}ω̂∈Ω̂ρ

)
.

Minimizing cost across all techniques, j’s shadow unit cost is

min
ρ∈%(ω)

min
φ∈Φωjρ

Cωρ
(
λl(φ), {λω̂(φ)}ω̂∈Ω̂ρ

)
One implication is that j’s total shadow cost can be expressed as

cjyj =
1

tl
wlj +

∑
ω̂∈Ωρ

1

tsω̂(φ)
psω̂(φ)xsω̂(φ)

We assume that prices in firm-to-firm trade are set at the supplier’s shadow unit cost, and that sales to final
consumers are determined via monopolistic competition, so that prices are a fixed markup ε

ε−1 over shadow
unit cost.

While we have no microfoundation for why the wedges would take this particular form, it still may be
interesting to explore how our results would differ under this alternative formulation.

A key difference from the baseline model is that the wedges themselves represent behavioral distortion
but do not use up resources. To solve for the actual allocation, we need to solve for the resources that get
used in producing each good. Towards this, define the “resource gap” for firm j, aj ∈ [0, 1], to be the ratio
of the labor used across all stages of production (by firm j, its suppliers, its suppliers’ suppliers, etc.) to
produce a unit of good j and the shadow unit cost of firm j. In other words, if cj is j’s shadow unit cost,
ajcj is the cumulative expenditure on primary inputs (i.e., labor) to produce a unit of good j. Suppose that
j uses technique φ, and it produces yj units of output using labor lj and xsω̂(φ) units of intermediate inputs

used from respective suppliers sω̂ (φ). If the firm faces wedges tl and
{
tsω̂(φ)

}
, then its resource gap satisfies
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the equation

ajcjyj = wlj +
∑
ω̂∈Ωρ

asω̂(φ)csω̂(φ)xsω̂(φ) (14)

That is, cumulative expenditure on labor to make good j is equal to the sum of the labor directly used plus
the cumulative labor used to make each input.

We briefly summarize the key equations that can be used to estimate the distortions and recipe tech-
nologies in this alternative environment, as well as to compute the counterfactual change in aggregate pro-
ductivity that would result from changes in distortions in this alternative environment. Proofs are relegated
to Appendix H.2 below.

Among firms in industry ω that, in equilibrium, use recipe ρ, the following moment conditions hold

E

[
sRj
1
t̄x
αρR
− sHj
αρH

]
= 0

E

[
sLj
1
tl
αρL
− sHj
αρH

]
= 0

(15)

where t̄x is the harmonic average of the wedges that prevail in equilibrium, as in our baseline environment.
The first moment condition is similar to the one that arises in our baseline environment: the expenditure on
relationship-specific inputs is shaded down by distortions relative to what the expenditure would be in our
baseline environment. The second moment condition differs because, in contrast to our baseline, here the
distortions on relationship-specific intermediate inputs do not cause the firm to use extra labor. Following
the algorithm outlined in Section 4, these two moment conditions can be used to estimate distortions for
each state, t̄x, and technology parameters for each recipe.

We next turn to counterfactuals. As with Section 4, we are interested in the change in aggregate
productivity that would come from a change in the distribution of distortions, T (·). Like in Proposition 4,
we can solve for this in changes. The change in welfare is

U ′

U
=

{∑
ωHHω

(
C′ω
Cω

)1−η
} 1
η−1 +1

∑
ω HHω ā

′
ω

(
C′ω
Cω

)1−η∑
ω HHω āω

(16)

and the change in the shadow cost index for industry ω is

(
C ′ω
Cω

)−γ
=


(
t′l
tl

)αρL ( t∗′x
t∗x

)αρR ∏
ω̂∈Ω̂ρ

(
C ′ω̂
Cω̂

)αρω̂
−γ

where HHω is the share of the household’s expenditure spent on goods in industry ω in the current equilib-
rium, and Rωρ is the share of revenue in industry ω accounted for by firms that use recipe ρ in the current
equilibrium. To find the change in aggregate productivity, we need to solve for two extra sets of variables,
āω and ā′ω, the average resource gap for each industry in the current equilibrium and in the counterfactual.
These can be solved for recursively with the following two equations

āω =
∑
ρ∈%ω

Rωρ

 1

tl
αρL +

∑
ω̂∈Ω̂Rρ

1

t̄x
āω̂α

ρ
ω̂ +

∑
ω̂∈Ω̂Hρ

āω̂α
ρ
ω̂



ā′ω =
∑
ρ∈%ω

Rωρ


(
t′l
tl

)αρL ( t∗′x
t∗x

)αρR∏
ω̂∈Ω̂ρ

(
C′ω̂
Cω̂

)αρω̂
C ′ω/Cω


−γ 1

t′l
αρL +

∑
ω̂∈Ω̂Rρ

1

t̄′x
ā′ω̂α

ρ
ω̂ +

∑
ω̂∈Ω̂Hρ

ā′ω̂α
ρ
ω̂
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(b) Halving wedges

Figure H.1 Counterfactural increases in aggregate productivity, alternative model

The figure shows the counterfactual increase in U when the wedges on relationship-specific
inputs are reduced in the alternative model where distortions do not entail a resource cost.
In the left panel we reduce t̄x according to the fraction of t̄x that is explained by court
congestion in a linear IV regression; in the right panel we cut the t̄x in half.

Provided that αρL > 0 in each industry, each of these equations is a contraction. Note that relative to the
baseline model in the main text of the paper, no extra information is required to estimate the model or
compute counterfactuals.

H.1 Results for Alternative Formulation of the Distortion

Figure H.1 shows the results from conducting the counterfactual (Equation 16) using the parameter estimates
from the moment conditions (15). Counterfactual welfare changes are a bit smaller than in the benchmark
model, where a reduction in the distortions also frees up labor that can be used in production.

H.2 Proofs for Alternative Formulation of the Distortion

Let Fω(c) be the fraction of firms in industry ω with shadow unit cost weakly less than c. As in the baseline
economy, Proposition 1 applies, so that Fω(c) = 1−e−(c/Cω)γ where the shadow cost indices for each industry
{Cω} satisfy

Cω =

∑
ρ∈%ω

κωρBωρ

(t∗x)α
ρ
Rt
αρL
l

∏
ω̂∈Ω̂ρ

C
αρω̂
ω̂

−γ
− 1
γ

(17)

t∗x =

(∫ ∞
1

t−ζRx dT (tx)

)−1/ζR

and κωρ is a constant that depends on technological parameters.
We begin by deriving two results that will be helpful in characterizing the equilibrium. We also define

F̃ω (c, a) to be the fraction of firms in industry ω with shadow unit cost weakly less than c and resource gap
weakly less than a.

Lemma H.1 Among suppliers of any input that are selected in equilibrium, the effective shadow cost λ
delivered by the suppler, resource gap of the supplier, a, and the wedge facing the buyer of using that supplier,
tx, are mutually independent.
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Proof. Consider a technique of recipe ρ for which the common component of productivity is bω̂(φ). For
any such technique, the arrival rate of suppliers with resource gap less than a, for which the wedge facing
the buyer would be less that t0 and that delivers effective shadow cost weakly less than λ (which means
that if match-specific productivity is z, the supplier’s shadow cost c is small enough so that λ ≤ tc

zbω̂(φ) , i.e.,
λzbω̂(φ)

t ≤ c) is∫ ∞
0

∫ t0

1

F̃ω̂

(
λzbω̂(φ)

t
, a

)
dT (t)ζω̂z

−ζω̂−1dz = [λbω̂(φ)]
ζω̂

∫ ∞
0

∫ t0

1

F̃ω̂(u, a)t−ζω̂dT (t)ζω̂u
−ζω̂−1du

= [λbω̂ (φ)]
ζω̂

∫ t0

1

t−ζω̂dT (t)

∫ ∞
0

F̃ω̂ (u, a) ζω̂u
−ζω̂−1du

=

[
λbω̂ (φ)

Λω̂

]ζω̂ ∫ t0
1
t−ζω̂dT (t)∫∞

1
t−ζω̂dT (t)

∫∞
0
F̃ω̂ (u, a) ζω̂u

−ζω̂−1du∫∞
0
Fω̂ (u) ζω̂u−ζω̂−1du

=

[
λbω̂ (φ)

Λω̂

]ζω̂
T̃ (t0)Aω̂(a)

where T̃ (t0) ≡
∫ t0
1 t−ζω̂dT (t)∫∞
1
t−ζω̂dT (t)

and Λω̂ ≡

{
t∗x
[∫∞

0
c−ζRdFω̂(c)

]−1/ζR
, ω̂ ∈ ΩρR[∫∞

0
c−ζHdFω̂(q)

]−1/ζH
, ω̂ ∈ ΩρH

are defined as in the baseline

economy and Aω̂(a) ≡
∫∞
0
F̃ω̂(u,a)ζω̂u

−ζω̂−1du∫∞
0
Fω̂(u)ζω̂u

−ζω̂−1du
. We can differentiate to find the arrival rate of suppliers that

deliver effective cost λ and resource gap weakly less than v and with wedge weakly less than t0,

ζω̂λ
ζω̂−1

[
bω̂ (φ)

Λω̂

]ζω̂
T̃ (t0)Aω̂ (a)

Next note that arrival rate of suppliers that deliver effective shadow cost weakly less than λ is
[
λbω̂(φ)

Λω̂

]ζω̂
, so

the probability that no such techniques arrive is e
−
[
λbω̂(φ)

Λω̂

]ζω̂
. Together, to find the probability that the best

supplier of an input for a technique delivers effective cost weakly less than λ0, has resource gap weakly less
than a, and comes with a wedge for the buyer of t0, we simply integrate over possible value of λ ∈ [0, λ0] the
arrival rate of a supplier with these properties multiplied by the probability that there is no better supplier
(these are indepenent events)∫ λ0

0

e
−
[
λbω̂(φ)

Λω̂

]ζω̂
ζω̂λ

ζω̂−1

[
bω̂ (φ)

Λω̂

]ζω̂
T̃ (t0)A

ω̂
(a) dλ = A

ω̂
(a) T̃ (t0)

∫ λ0

0

ζω̂λ
ζω̂−1

[
bω̂ (φ)

Λω̂

]ζω̂
e
−
[
λbω̂(φ)

Λω̂

]ζω̂
dλ

= Aω̂ (a) T̃ (t0) e
−
[
λ0bω̂(φ)

Λω̂

]ζω̂
Since the resource gap, a, the wedge facing the buyer, t0, and the effective cost λ0 are multiplicatively
separable, they are mutually independent. Finally, since only λ0 enters the probability that the technique is
actually used by the buyer, it must be that the three are mutually independent across suppliers of the input
that are actually used in equilibrium.

Lemma H.2 Among firms in any industry, shadow cost c and resource gap a are independent.

Proof. For a firm in industry ω, let H̃ωρ (c, a) be arrival rate of techniques with recipe ρ that delivers shadow
cost weakly less than c and resource wedge weakly less than a for the buyer.

Consider a single technique of recipe ρ that uses labor and n intermediate inputs, for which the common
components of input-augmenting productivities are b = {b1, b1, ..., bn}. The probability that the technique
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delivers a shadow cost weakly less than c and resource gap weakly less than a0 is∫ ∞
0

...

∫ ∞
0

1

{
Cωρ (λl, λ1, ..., λn) ≤ c,

1
tl

λlCωρl(λ)
Cωρ(λ) + a1

t1

λ1Cωρω̂1
(λ)

Cωρ(λ) + ...+ an
tn

λnCωρω̂n (λ)
Cωρ(λ) ≤ a0

}

×
n∏
k=1

Aω̂ (ak)Tω̂ (tk) e
−
(
λkbk
Λω̂k

)ζω̂
b
ζω̂k
k

Λ
ζω̂k
ω̂k

ζω̂kλ
ζω̂k−1

k dλω̂k

where λl = tl
bl

. To find H̃ωρ(c, a0), we simply need to integrate over the arrival of such techniques across
realizations of the vector b:

H̃ (c, a0) =

∫ ∞
0

...

∫ ∞
0

1

{
Cωρ (λl, λ1, ..., λn) ≤ c,

1
tl

λlCωρl(λ)
Cωρ(λ) + a1

t1

λ1Cωρω̂1
(λ)

Cωρ(λ) + ...+ an
tn

λnCωρω̂n (λ)
Cωρ(λ) ≤ a0

}

×
n∏
k=1

Aω̂ (dak)Tω̂ (dtk) e
−
(
λkbk
Λω̂k

)ζω̂
b
ζω̂k
k

Λ
ζω̂k
ω̂k

ζω̂kλ
ζω̂k−1

k dλω̂kBωρ (db)

Using the definition of λl = tl
bl

and the homogeneity of the cost function, this is

H̃ (c, a0) =

∫ ∞
0

...

∫ ∞
0

1

{
Cωρ

(
tl
blc
, λ1

c , ...,
λn
c

)
≤ 1,

1
tl
λl
c Cωρl

(
λ
c

)
+ a1

t1
λ1

c Cωρω̂1

(
λ
c

)
+ ...+ an

tn
λn
c Cωρω̂n

(
λ
c

)
≤ a0

}

×
n∏
k=1

Aω̂ (dak)Tω̂ (dtk) e
−
(
λkbk
Λω̂k

)ζω̂
b
ζω̂k
k

Λ
ζω̂k
ω̂k

ζω̂kλ
ζω̂k−1

k dλω̂kBωρ(db)

It will be useful to make the change of variables vk = λk
c , vl = tl

cbl
, and mj =

(
λlbl
Λω̂

)ζω̂k
to express H̃ (c, a)

as

H̃ (c, a0) =

∫ ∞
0

...

∫ ∞
0

1

{
Cωρ (vl, v1, ..., vn) ≤ 1,

1
tl
vlCωρl (v) + a1

t1
v1Cωρω̂1

(v) + ...+ an
tn
vnCωρω̂n (v) ≤ a0

}

×Bωρ
(
tl
c

)−βρl n∏
k=1

Aω̂ (dak)Tω̂ (dtk)

(
m

1/ζω̂k
k Λω
c

)−βω̂k
e−mkdmkV (dv)

or more simply
H̃ (c, a0) = Āωρ (a0) cγ

where

Āωρ (a0) ≡ Bωρt
−βρl
l Λ

−βρω̂1

ω̂1
...Λ
−βρω̂n
ω̂n

∫ ∞
0

...

∫ ∞
0

1

{
Cωρ (vl, v1, ..., vn) ≤ 1,

1
tl
vlCωρl (v) + a1

t1
v1Cωρω̂1

(v) + ...+ an
tn
vnCωρω̂n (v) ≤ a0

}
×

n∏
k=1

Aω̂ (dak)Tω̂ (dtk)m
−βω̂k/ζω̂k
k e−mkdmkV (dv)

We can differentiate to find the arrival rate of techniques that deliver shadow cost c and resource cost no
greater than a

Āωρ (a) γcγ−1

Next note that arrival rate of techniques of recipe ρ that deliver shadow cost weakly less than c regardless of
resource gap is Āωρ(1)cγ , so that the probability of no such techniques across all recipes is

∏
ρ∈%ω e

−Āωρ(1)cγ =

e−c
γ∑

ρ∈%ω Āωρ(1) = e−(c/Cω)γ (which follows from the definition of Cω). Together, to find the probability
that the best technique delivers shadow cost weakly less than c0 and has resource gap weakly less than a,
we simply integrate over possible values of c ∈ [0, c0] the arrival rate of a supplier with these properties
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multiplied by the probability that there is no better supplier (these are independent events)

F̃ (c, a) =
∑
ρ∈%ω

∫ c0

0

e−(c/Cω)γ Āωρ(a)γcγ−1dc

=
∑
ρ∈%ω

Āωρ(a)

∫ c0

0

e−(c/Cω)γγcγ−1dc

=

∑
ρ∈%ω Āωρ(a)

C−γω
e−(c0/Cω)γ

The result follows from the fact that this is multiplicatively separable in c0 and a.

Claim H.1 Among firms in industry ω that choose to use recipe ρ, the following two equations hold

E

[
sRj
1
t̄x
αρR
− sHj
αρH

∣∣∣∣∣ ρ
]

= 0

E

[
sLj
1
tl
αρL
− sHj
αρH

∣∣∣∣∣ ρ
]

= 0

Proof. Let ps be the actual price per unit paid to supplier so that tsps is the shadow cost per unit of the
input to the buyer. The share of j’s revenue paid to the supplier of input ω̂ can be expressed as

sω̂j =
psω̂(φ)xsω̂(φ)

Revj
=

1

tsω̂(φ)

tsω̂(φ)psω̂(φ)xsω̂(φ)

cjyj

cjyj
Revj

=
1

tsω̂(φ)

λω̂(φ)Cωρω̂ (λ)

Cωρ (λ)

cjyj
Revj

where the last equality follows from Shephard’s lemma. Similarly, the share of revenue spent on labor is

sLj =
wlj

Revj
=

1

tl

tlwlj
cjyj

cjyj
Revj

=
1

tl

λLCωρL (λ)

Cωρ (λ)

cjyj
Revj

Among firms that produce using recipe ρ whose shadow cost is c, the average share of revenue spent on
relationship-specific inputs is

E [sRj |cj , ρ] =
∑
ω̂∈ΩRρ

E [sω̂j |cj , ρ] =
∑
ω̂∈ΩRρ

E

[
1

tsω̂(φ)

λω̂(φ)Cωρω̂ (λ)

Cωρ (λ)

cy

Rev

∣∣∣∣ c, ρ]

Using the law of iterated expectations along with E
[

1
tsω̂(φ)

∣∣∣λ] = 1
t̄x

, this is

E [sRj |cj , ρ] =
∑
ω̂∈ΩRρ

E

[
E

[
1

tsω̂(φ)

λω̂(φ)Cωρω̂ (λ)

Cωρ (λ)

cy

Rev

∣∣∣∣λ, c, ρ]∣∣∣∣ c, ρ]

=
∑
ω̂∈ΩRρ

E

[
E

[
1

tsω̂(φ)

∣∣∣∣λ, c, ρ] λsω̂(φ)Cωρω̂ (λ)

Cωρ (λ)

cy

Rev

∣∣∣∣ c, ρ]

=
∑
ω̂∈ΩRρ

1

t̄x
E

[
λω̂(φ)Cωρω̂ (λ)

Cωρ (λ)

cy

Rev

∣∣∣∣ c, ρ]

Finally, note that, conditional on shadow cost c, downstream demand and prices do not depend on any of the

determinants of c. This implies that for a firm in industry ω, E
[
λω̂(φ)Cωρω̂(λ)
Cωρ(λ)

cy
Rev

∣∣∣ c, ρ] = E
[
cy

Rev

∣∣ c, ρ]E [ λω̂(φ)Cωρω̂(λ)
Cωρ(λ)

∣∣∣ c, ρ].
Using Proposition 2, we have

E [sRj |cj , ρ] =
∑
ω̂∈ΩRρ

1

t̄x
αρω̂E

[ cy
Rev
|c, ρ

]
=

1

t̄x
αρRE

[ cy
Rev
|c, ρ

]
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Using similar logic, we have

E [sHj |cj ] =
∑
ω̂∈ΩHρ

E [sω̂j |cj ] =
∑
ω̂∈ΩHρ

E

[
λω̂(φ)Cωρω̂ (λ)

Cωρ (λ)

cy

Rev

∣∣∣∣ c] =
∑
ω̂∈ΩHρ

αρω̂E
[ cy

Rev

∣∣∣ c] = αρHE
[ cy

Rev

∣∣∣ c]
E [sLj |cj ] = E

[
1

tl

λlCωρL (λ)

Cωρ (λ)

cy

Rev

∣∣∣∣ c] =
1

tl
αρLE

[ cy

Rev

∣∣∣ c]
Elminating E

[
cy

Rev

∣∣ c], we have the two moment conditions

E

[
sRj
1
t̄x
αρR
− sHj
αρH

]
= 0

E

[
sLj
1
tl
αρL
− sHj
αρH

]
= 0

Lemma H.3 Let aω be the average resource gap among firms in industry ω. Then

āω =
∑
ρ∈%ω

Rωρ

 1

tl
αρL +

∑
ω̂∈ΩRρ

1

t̄x
āω̂α

ρ
ω̂ +

∑
ω̂∈ΩHρ

āω̂α
ρ
ω̂


Proof. We begin by dividing (14) by the total shadow cost cjyj and rearranging.

aj =
wlj
cjyj

+
∑
ω̂∈Ωρ

asω̂(φ)

csω̂(φ)xsω̂(φ)

cjyj

=
1

tl

tlwlj
cjyj

+
∑
ω̂∈Ωρ

asω̂(φ)

tsω̂(φ)

tsω̂(φ)csω̂(φ)xsω̂(φ)

cjyj

=
1

tl

λjlCωρl (λj)
Cωρ (λj)

+
∑
ω̂∈Ωρ

asω̂(φ)

tsω̂(φ)

λjω̂Cωρω̂ (λj)

Cωρ (λj)

Among firms in industry ω that use recipe ρ and have a vector of effective shadow cost λ, the average resource
gap is

E [aj |λ, ω, ρ] =
1

tl

λjlCωρl (λj)
Cωρ (λj)

+
∑
ω̂∈Ωρ

E

[
asω̂(φ)

tsω̂(φ)
|ω, ρ

]
λjω̂Cωρω̂ (λj)

Cωρ (λj)

=
1

tl

λjlCωρl (λj)
Cωρ (λj)

+
∑
ω̂∈ΩRρ

1

t̄x
āω̂
λjω̂Cωρω̂ (λj)

Cωρ (λj)
+
∑
ω̂∈ΩHρ

āω̂
λjω̂Cωρω̂ (λj)

Cωρ (λj)

Then the average resource gap across all firms that use ρ is

E [aj |ω, ρ] = E [E [aj |λ, ω, ρ] |ω, ρ] =
1

tl
αρL +

∑
ω̂∈ΩRρ

1

t̄x
v̄ω̂α

ρ
ω̂ +

∑
ω̂∈ΩHρ

āω̂α
ρ
ω̂

To find the average resource gap, we simply weight the previous equation by the probability that a firm
chooses to use recipe ρ, which, in equilibrium, is equal to the share of revenue earned by firms that use recipe
ρ.

āω =
∑
ρ∈%ω

Rωρ

 1

tl
αρL +

∑
ω̂∈ΩRρ

1

t̄x
āω̂α

ρ
ω̂ +

∑
ω̂∈ΩHρ

āω̂α
ρ
ω̂
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Claim H.2 Suppose that the distribution of wedges changes from T to T ′. The following equations are
sufficient to compute the counterfactual change in aggregate productivity:

U ′

U
=

{∑
ωHHω

(
C′ω
Cω

)1−η
} 1
η−1 +1

∑
ω HHω ā

′
ω

(
C′ω
Cω

)1−η∑
ω HHω āω(

C ′ω
Cω

)−γ
=


(
t′l
tl

)αρL ( t∗′x
t∗x

)αρR ∏
ω̂∈Ωρ

(
C ′ω̂
Cω̂

)αρω̂
−γ

āω =
∑
ρ∈%ω

Rωρ

 1

tl
αρL +

∑
ω̂∈ΩRρ

1

t̄x
āω̂α

ρ
ω̂ +

∑
ω̂∈ΩHρ

āω̂α
ρ
ω̂


ā′ω =

∑
ρ∈%ω

Rωρ


(
t′l
tl

)αρL ( t∗′x
t∗x

)αρR∏
ω̂∈Ωρ

(
C′ω̂
Cω̂

)αρω̂
C ′ω/Cω


−γ 1

t′l
αρL +

∑
ω̂∈ΩRρ

1

t̄′x
ā′ω̂α

ρ
ω̂ +

∑
ω̂∈ΩHρ

ā′ω̂α
ρ
ω̂


Proof. As in our baseline, the price level in industry ω and in aggregate are respectively

Pω =
ε

ε− 1
J

1
1−ε
ω Γ

(
1− ε− 1

γ

) 1
1−ε

Cω

P =
ε

ε− 1

{∑
ω

υωJ
η−1
ε−1
ω Γ

(
1− ε− 1

γ

) η−1
ε−1

C1−η
ω

} 1
1−η

Total profit generated by the production of good j (revenue from final consumer less cumulative labor cost)

is (pj − ajcj)uj . Using cj = ε−1
ε pj and uj = Uυω

(
Pω
P

)−η (pωj
Pω

)−ε
, gives

(pj − ajcj)uj =

(
pj − aj

ε− 1

ε
pj

)
Uυω

(
Pω
P

)−η (
pωj
Pω

)−ε
=

(
1− aj

ε− 1

ε

)
UPυω

(
Pω
P

)1−η (
pωj
Pω

)1−ε

Summing across all firms in the economy and using the fact that vj is independent of pj gives

Π =
∑
ω

∫ Jω

0

(
1− aj

ε− 1

ε

)
UPυω

(
Pω
P

)1−η (
pωj
Pω

)1−ε

dj

= UP − ε− 1

ε
U
∑
ω

υωP
η (Pω)

1−η
∫ Jω

0

aj

(
pωj
Pω

)1−ε

dj

= UP − ε− 1

ε
U
∑
ω

υωP
η (Pω)

1−η
āω

∫ Jω

0

(
pωj
Pω

)1−ε

dj

= UP − ε− 1

ε
U
∑
ω

υωP
η (Pω)

1−η
āω
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Plugging this into the household’s budget constraint gives

UP = wL+ Π

= wL+ UP − ε− 1

ε
U
∑
ω

υωP
η (Pω)

1−η
āω

Rearranging and using the expression for and using the expressions for Pω and P gives

U =
w

ε−1
ε

∑
ω υωP

η (Pω)
1−η

aω
L

= Γ

(
1− ε− 1

γ

) 1
ε−1

{∑
ω υωJ

η−1
ε−1
ω C1−η

ω

} 1
η−1 +1

∑
ω āωυωJ

η−1
ε−1
ω C1−η

ω

L

To find a counterfactual, we thus have

U ′

U
=

{∑
ω υωJ

η−1
ε−1
ω (C′ω)

1−η
} 1
η−1

+1

∑
ω ā
′
ωυωJ

η−1
ε−1
ω (C′ω)1−η{∑

ω υωJ
η−1
ε−1
ω (Cω)1−η

} 1
η−1

+1

∑
ω āωυωJ

η−1
ε−1
ω (Cω)1−η

=

{∑
ωHHω

(
C′ω
Cω

)1−η
} 1
η−1 +1

∑
ω HHω ā

′
ω

(
C′ω
Cω

)1−η∑
ω HHω āω

We thus need expressions for āω and ā′ω. The expression for āω comes directly from Lemma 10, which
also delivers an expression for ā′ω:

ā′ω =
∑
ρ∈%ω

R′ωρ

 1

t′l
αρL +

∑
ω̂∈ΩRρ

1

t̄′x
ā′ω̂α

ρ
ω̂ +

∑
ω̂∈ΩHρ

ā′ω̂α
ρ
ω̂


=

∑
ρ∈%ω

R′ωρ
Rωρ

Rωρ

 1

t′l
αρL +

∑
ω̂∈ΩRρ

1

t̄′x
ā′ω̂α

ρ
ω̂ +

∑
ω̂∈ΩHρ

ā′ω̂α
ρ
ω̂


=

∑
ρ∈%ω

R′ωρ
Rωρ

Rωρ

 1

t′l
αρL +

∑
ω̂∈ΩRρ

1

t̄′x
ā′ω̂α

ρ
ω̂ +

∑
ω̂∈ΩHρ

ā′ω̂α
ρ
ω̂


Then, noting that among firms in industry ω, the share of revenue of those that use recipe ρ is Rωρ =

κωρBωρ

(
t
α
ρ
L
l (t∗x)α

ρ
R
∏
ω̂∈Ωρ

C
α
ρ
ω̂

ω̂

Cω

)−γ
, the change in revenue share in the counterfactual is

R′ωρ
Rωρ

=


(
t′l
tl

)αρL ( t∗′x
t∗x

)αρR∏
ω̂∈Ωρ

(
C′ω̂
Cω̂

)αρω̂
C ′ω/Cω


−γ

The results follows from combining these last two equations.

H.3 A Hsieh-Klenow exercise

In the following, we try to do a quantification exercise that is as close as possible to Hsieh and Klenow
(2009), and point out some of the issues we would face.
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Suppose that each plant in industry ω that uses recipe ρ uses the production function

yωρj = AωρjL
αρL
ωρj

∏
ω̂∈Ω̂ρ

x
αρω̂
ωρjω̂

The planner maximizes output as

u∗ = max
uω,yωj ,Lωj ,xωjω̂

(∑
ω∈Ω

β
1
η
ω u

η−1
η

ω

) η
η−1

subject to

λ∗ωρj : yωρj ≤ AωρjL
αρL
ωρj

∏
ω̂∈Ω̂ρ

x
αρω̂
ωρjω̂

λ∗ω : uω +
∑
ω′

∑
ρ∈%ω′

∑
j∈Jω′ρ

xω′ρjω ≤

∑
ρ∈%ω

∑
j∈Jωρ

y
ε−1
ε

ωρj

 ε
ε−1

w∗ :
∑
ω

∑
ρ∈%ω

∑
j∈Jωρ

Lωρj ≤ L

If u is output in the current equilibrium, allocational efficiency is u
u∗ . We use the following result:

Proposition H.1 Define Mω ≡ λ∗ω/w
∗

pω/w
. Allocational efficiency is

u

u∗
=

pu

wL

(∑ pωuω
pu

M1−η
ω

) 1
1−η

and the {Mω} solve the system of equations

Mω =

∑
ρ∈%ω

∑
j∈Jωρ

pωρjyωρj
pωyω

[(
wLωρj

αρLpωρjyωρj

)αρL ∏
ω̂∈Ωρ

(
Mω̂

pω̂xωρjω̂
αρω̂pωρjyωρj

)αρω̂]1−ε


1
1−ε

.

Proof. We begin by showing that u∗ = w∗L. To see this, note that the FOCs for all firms’ inputs imply

w∗L∗ω +
∑
ρ∈%ω

∑
ω̂∈Ωρ

λ∗ω̂x
∗
ωω̂ = λ∗ωy

∗
ω = λ∗ωu

∗
ω +

∑
ω′

∑
ρ∈%ω′

λ∗ωx
∗
ω′ω

Summing across ω gives and noticing that the terms for intermediate inputs drop gives

w∗L =
∑
ω

w∗L∗ω =
∑
ω

λ∗ωu
∗
ω

The planner’s FOC for u∗ω is u∗ω = (λ∗ω)
−η
u∗, which implies

[∑
ω (λ∗ω)

1−η
] 1

1−η
= 1 and hence

∑
ω λ
∗
ωu
∗
ω = u∗.

The latter implies w∗L = u∗

Next, we derive the expression for u
u∗ , which can be rearranged as u

u∗ = u
w∗L =

u(
∑
ω(λ∗ω)1−η)

1
1−η

w∗L . Using
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λ∗ω = Mωpω
w∗

w , this can be expressed as

u

u∗
=

u

w∗L

(∑
ω

(λ∗ω)
1−η

) 1
1−η

=
u

w∗L

(∑
ω

(
Mωpω

w∗

w

)1−η
) 1

1−η

=
pu

wL

(∑
ω

(
pω
p

)1−η

M1−η
ω

) 1
1−η

=
pu

wL

(∑
ω

pωuω
pu

M1−η
ω

) 1
1−η

where the last line uses
(
pω
p

)1−η
= pωuω

pu .

Lastly we derive the system of equations for {Mω}. The first order conditions for Lωρj and {xωρjω̂}
imply

λ∗ωρj =

(
w∗

αρL

)αρL∏
ω̂∈Ωρ

(
λ∗ω̂
αρω̂

)αρω̂
Aωρj

=
1

yωρj

(
w∗Lωρj
αρL

)αρL ∏
ω̂∈Ωρ

(
λ∗ω̂xωρjω̂
αρω̂

)αρω̂
= pωρj

(
w∗Lωρj

αρLpωρjyωρj

)αρL ∏
ω̂∈Ωρ

(
λ∗ω̂xωρjω̂

αρω̂pωρjyωρj

)αρω̂
where the second line uses Aωρj = yωρj/

(
L
αρL
ωρj

∏
ω̂∈Ωρ x

αρω̂
ωρjω̂

)
. Using λ∗ω̂ = Mω̂pω̂

w∗

w , this is

λ∗ωρj = pωρj

(
w∗Lωρj

αρLpωρjyωρj

)αρL ∏
ω̂∈Ωρ

(
Mω̂

w∗

w pω̂xωρjω̂

αρω̂pωρjyωρj

)αρω̂

= pωρj
w∗

w

(
wLωρj

αρLpωρjyωρj

)αρL ∏
ω̂∈Ωρ

(
Mω̂

w∗

w pω̂xωρjω̂

αρω̂pωρjyωρj

)αρω̂

Household demand satisfies yωρj = yω

(
pωρj
pω

)−ε
which implies pωρj = pω

(
pωρjyωρj
pωyω

) 1
1−ε

. Plugging this in

and rearranging gives

λ∗ωρj/w
∗

pω/w
=

(
pωρjyωρj
pωyω

) 1
1−ε
(

wLωρj
αρLpωρjyωρj

)αρL ∏
ω̂∈Ωρ

(
Mω̂

w∗

w pω̂xωρjω̂

αρω̂pωρjyωρj

)αρω̂
Finally, we have

Mω =
λ∗ω/w

∗

pω/w
=

∑
ρ∈%ω

∑
j∈Jωρ

(
λ∗ωρj/w

∗

pω/w

)1−ε


1
1−ε

=

∑
ρ∈%ω

∑
j∈Jωρ

pωρjyωρj
pωyω

[(
wLωρj

αρLpωρjyωρj

)αρL ∏
ω̂∈Ωρ

(
Mω̂

pω̂xωρjω̂
αρω̂pωρjyωρj

)αρω̂]1−ε


1
1−ε
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Empirically implementing Theorem 6 to get robust measures of allocational efficiency is hard. We face
a number of issues, mostly relating to small/zero cost shares:

� Most papers on misallocation (in particular Hsieh and Klenow (2009)) winsorize the cost shares before
doing the exercise. Since the dispersion of cost shares is crucial to the magnitude of the result,
where the winsorizing threshold is set matters a lot for the outcomes (Rotemberg and White (2017)
demonstrate this problem very nicely). See below for an illustration of this problem in our setting.10

� One decision we have to take is how to interpret firms having a mix of intermediate inputs that is not
exactly the same (along the extensive margin) as that of the recipe. We face the same issue in our
model, but it is much more important quantitatively in a Hsieh-Klenow exercise because of the how
the gains from reallocation depend higher moments of the distribution of distortions.

� It is not clear how to include multi-product plants in this calculation. Here, we would need to know
how much of an input ω̂ is being used in the plant’s use of recipe ρ. In contrast, to do the counterfactual
in the main text of our paper, we need to know only the recipe sales shares of each plant.

In the following, we implement one version of this exercise. We pretend that the economy of each state
consists only of firms that correspond to the single-product plants in our data. We choose ε = 4. We
winsorize cost shares such that

pω̂xωρjω̂
αρω̂pωρjyωρj

is above a particular threshold (and the inverse is above the

inverse of the threshold). We do this by adjusting expenditures pω̂xωρjω̂ of j, but not sales of other firms,
or final demand.

Figure H.2 shows the distribution of resulting (inverses of) Mω for the state of Himachal Pradesh, for
winsorizing thresholds of 2%, 5%, and 10%. The resulting counterfactual increases in the final consumer’s
utility aggregate u are 600%, 330%, and 170%. Hence, results depend crucially on the winsorizing thresholds,
which are completely arbitrary. In Figure H.3 we show this across states. The figure shows the consumer
utility aggregate relative to its counterfactual undistorted one (u/u∗ in Theorem 6) by state and winsorizing
threshold, and separately for whether we use variation within recipes or within 5-digit industries. Again the
results depend heavily on the winsorizing threshold. Interestingly, u/u∗ are relatively similar across states.
The welfare gains accrue to a large extent from the extreme cost shares, so that it does not matter much
whether one looks at within-recipe or within-industry variation.

10Relatedly, how exactly should we do the winsorizing in a way that is model-consistent is not clear: should it be
done by changing expenditure (but then it should also change sales of other firms. Which firms?) or sales (but then
we would have to change either final consumer purchases or expenditures of other firms?).
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Figure H.2 Counterfactual increases in Mω, by industry
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(a) Within 5-digit Products

U/U*

0.0 0.2 0.4 0.6 0.8

0.02
0.05
0.1

Winsorizing Threshold

Himachal Pradesh
Punjab

Chandigarh
Uttarakhand

Haryana
Delhi

Rajasthan
Uttar Pradesh

Bihar
West Bengal
Jharkhand

Odisha
Chhattisgarh

Madhya Pradesh
Gujarat

Maharashtra
Andhra Pradesh

Karnataka
Goa

Kerala
Tamil Nadu

St
at
e

(b) Within Recipes

Figure H.3 Hsieh-Klenow Exercise Results, By State

In panel (a), we assume that each product has only one recipe; recipes are therefore equal
to products. In panel (b), we use the recipes that emerge from the benchmark results in the
main text of the paper.
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