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Individual producers exhibit enormous heterogeneity in many dimensions. This pa-
per develops a theory in which the network structure of production—who buys inputs
from whom—forms endogenously. Entrepreneurs produce using labor and exactly one
intermediate input; the key decision is which other entrepreneur’s good to use as an
input. Their choices collectively determine the economy’s equilibrium input–output
structure, generating large differences in size and shaping both individual and aggre-
gate productivity. When the elasticity of output to intermediate inputs in production
is high, star suppliers emerge endogenously. This raises aggregate productivity as, in
equilibrium, more supply chains are routed through higher-productivity techniques.
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“The social payoff of an innovation can rarely be identified in isolation. The growing productivity of
industrial economies is the complex outcome of large numbers of interlocking, mutually reinforcing
technologies, the individual components of which are of very limited economic consequence by them-
selves. The smallest relevant unit of observation is seldom a single innovation but, more typically, an
interrelated clustering of innovations.”

Rosenberg (1979, pp. 28–29)

ONE OF THE MORE STRIKING FEATURES of microeconomic production data is the enor-
mous heterogeneity across producers. Researchers have documented vast differences in
employment, sales, and, more recently, engagement in input–output linkages.1 These ob-
servations have generated interest in two key questions: Why is there so much microeco-
nomic heterogeneity? And what are the implications of this heterogeneity for aggregate
productivity?

This paper develops a theory in which the economy’s input–output architecture arises
endogenously and shows that enormous differences in size can emerge even when differ-
ences in productivity are arbitrarily small. The theory offers a new perspective relative
to canonical models of firm dynamics that typically explain dispersion in size as resulting
from the accumulation of random growth of productivity or demand residuals.2

The theory is based on the premise that there may be multiple ways to produce a good,
each with a different set of inputs. In the model, each entrepreneur sells a particular good
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and can use a variety of techniques to produce that good. Each technique allows the en-
trepreneur to produce her good using labor and exactly one other entrepreneur’s good as
an intermediate input, with productivity specific to that input. The key decision is which
other entrepreneur’s good to use. An entrepreneur’s cost of production when using one
of these techniques depends both on the technique’s productivity and on the price of the
intermediate input which, in turn, depends on the production cost of the entrepreneur
that produces that input. In this environment, the economy’s production possibilities can-
not be summarized in terms of the capabilities of individual producers. The collection of
known production techniques forms a network comprising each entrepreneur’s potential
suppliers and potential customers—others who might use the entrepreneur’s good as an
intermediate input. When producing, each entrepreneur selects from her techniques the
one that is most cost-effective. These choices collectively determine each producer’s size
and contribution to aggregate productivity.

Terms of trade determine which of the potential input–output linkages are used in equi-
librium and the extent to which one producer’s low cost of production is passed on to
others. Producers engage in standard monopolistic competition in sales of their goods to
a representative household for consumption, but bilateral contracts govern each pairwise
transaction. I restrict attention to arrangements that are countably-stable; terms of trade
must be such that countable coalitions cannot find alternative terms that are mutually
beneficial.3 In any such equilibrium, production within each supply chain is efficient.

The paper’s main results describe how individual choices lead to the endogenous emer-
gence of star suppliers and the implications of this for aggregate outcomes.4 Star sup-
pliers are individual entrepreneurs that, in equilibrium, sell their goods to many other
entrepreneurs for intermediate use.5 For an entrepreneur to be a star supplier, she must
have many potential customers, and a large fraction of those potential customers must
choose to use her good in equilibrium. Whether those potential customers choose her
good depends both on the price she is willing to accept for her good and on how much
those potential customers are willing to trade off a technique with a supplier that offers a
low price for a technique with a high match-specific productivity.6

One striking feature of this environment is that the prevalence of star suppliers—and
hence dispersion in size—is independent of the parameter that determines dispersion in
entrepreneurs’ marginal cost. Thus even with arbitrarily little variation in entrepreneurs’
marginal costs, there can still be large differences in size.

To shed light on the economic forces shaping the organization of production and ag-
gregate productivity, I impose a functional form assumption that allows for an analytical
characterization of a number of features of the economy. The key part of the assumption

3I also discuss the implications of a weaker restriction, pairwise stability. Pairwise stable arrangements are
not robust to deviations that would be natural in this environment. For example, if an entrepreneur agrees to
terms with a new supplier that would lower her marginal cost, it would be natural for that entrepreneur to
reoptimize terms of trade with any buyers (and for those buyers to reoptimize terms of trade with their buyers,
etc.), and for the new supplier to alter the quantity of inputs she purchases from her supplier, etc.

4The model is constructed to speak to patterns of linkages among individual producers rather than broader
patterns of which sectors buy inputs from which other sectors. See Carvalho and Voigtländer (2014) for a
promising step in that direction.

5Building on Gabaix (2011), Acemoglu et al. (2012) showed that the prevalence of star suppliers is one
factor that determines whether idiosyncratic shocks are relevant for aggregate fluctuations.

6Since Rosen (1981), the superstar literature studies how small differences in talent can lead to large dif-
ferences in compensation. The key factor is the relationship between differences in talent and how much cus-
tomers are willing to trade off differences in talent for a lower price. While the analogy is not perfect, similar
forces are at play here.
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is that the distribution from which techniques’ productivities are drawn has a right tail that
follows a power law with exponent ζ. Under this assumption, I derive four results about
the way entrepreneurs’ selections of suppliers interact to determine the size distribution,
matching patterns, expenditure shares, and aggregate productivity.

I first identify features of the environment that determine how customers are dis-
tributed across entrepreneurs and the size distribution. The distribution of customers
depends on a single parameter, α; each technique is a Cobb–Douglas production func-
tion, and α is the elasticity of output of the buyer’s good with respect to the supplier’s
good. One measure of the prevalence of star suppliers is the thickness of the right tail of
this distribution. I show that the distribution has a power-law tail with exponent 1/α. Why
does α play the key role? Recall that when an entrepreneur selects a supplier, she consid-
ers both the match-specific productivity and the cost of the associated input of each of her
techniques. When α is small, the cost of the inputs is less important, and thus suppliers’
costs are less important drivers of choices of suppliers. Conversely, when α is large, en-
trepreneurs with low production costs are selected as suppliers more systematically, and
are therefore more likely to be star suppliers. In line with the results mentioned above,
the distribution does not depend on ζ, which indexes dispersion in marginal costs.

The distribution of customers across entrepreneurs is one determinant of the size dis-
tribution. An entrepreneur’s size, as measured by employment, depends on her sales to
the household and her sales to each customer, which depends on the sizes of those cus-
tomers. It turns out that, under the functional form assumption, the size distribution has a
threshold property. If α is small, the model has the property found in many other models
that the right tail is dominated by those that sell large quantities to the household, and
the shape of the right tail depends on dispersion of marginal cost (ζ). If α is larger, in-
termediate inputs become more important in production and sales of intermediate inputs
become more concentrated in star suppliers. If α is large enough to cross a threshold,
the right tail becomes dominated by star suppliers and follows a power law with exponent
1/α. Thus the extent of heterogeneity in productivity or in marginal cost no longer plays
any role in determining the shape of the right tail.

Second, I show that one’s conclusions about whether the equilibrium features assorta-
tive matching depends on which attribute one focuses on. Among equilibrium matches,
buyers’ and suppliers’ marginal costs are uncorrelated, but their sizes (as measured by em-
ployment) are positively correlated. For a randomly selected technique, if the potential
supplier has a low cost of production, the technique is likely to deliver a low cost of pro-
duction to the potential buyer. In equilibrium, however, techniques are not selected ran-
domly. An entrepreneur is likely to select a technique whose supplier has a low marginal
cost even if the match-specific productivity is poor, but is unlikely to select a technique
whose supplier has a high marginal cost unless the match-specific productivity is especially
high. As a result, among matches observed in equilibrium, buyers’ and suppliers’ marginal
costs are uncorrelated.7 Despite this, their sizes are positively correlated; a supplier whose

7One of the most promising applications of data on firm-to-firm transactions is using the observed network
structure to learn about the production process—who supplies inputs to whom and how these interactions
change over time. Since much of the literature is focused on the source of fluctuations, an effort has been
made to identify shocks and decompose the fluctuations (Foerster, Sarte, and Watson (2011), Atalay (2017),
Di Giovanni, Levchenko, and Méjean (2014), Kramarz, Martin, and Mejean (2016)). An important lesson
from the labor literature (Abowd, Kramarz, and Margolis (1999), Lopes de Melo (2018)) is that ignoring the
endogeneity of match formation can bias inference about individual characteristics. The fact that individuals
select into a match provides information about those individuals and about the quality of the match. The same
biases arise in the environment presented here.
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customer is unusually large needs to hire an unusually large amount of labor to produce
the intermediates for that customer.

Third, while dispersion of marginal cost has no impact on the prevalence of star sup-
pliers, it does determine the aggregate cost share of intermediate inputs. In a competitive
equilibrium, the cost share of intermediate inputs would be α. Here, however, since buy-
ers and suppliers split surplus, the cost share is weakly larger than α.8 While countable sta-
bility does not pin down how producers split surplus, there is a class of equilibria indexed
by a parameter that has a natural interpretation as bargaining power.9 Notably, within
this class, the aggregate cost share depends on ζ, which indexes dispersion in marginal
cost and is related to the size of the loss when an entrepreneur must switch to its next best
supply chain.

Finally, the emergence of star suppliers affects aggregate productivity in the follow-
ing sense: entrepreneurs’ selections jointly determine the supply chains used to produce
each good. Aggregate productivity depends on the match-specific productivity of the tech-
niques used at each step in each of those supply chains. When α is larger, supply chains
are more likely to be routed through the most productive techniques in the economy, rais-
ing aggregate productivity. This channel complements the usual input–output multiplier
that is present in all models with roundabout production.10

Related Literature

The model provides a mechanism that delivers a skewed cross-sectional distribution of
links that complements but differs from that of the influential preferential attachment
model of Barabasi and Albert (1999).11 Here, even though the distribution of potential
customers follows a distribution with a thin tail, the distribution of actual customers en-
dogenously exhibits more variation. The mechanism is a natural one once choices are
endogenous: entrepreneurs that are willing to accept a lower price for their goods are
systematically more likely to be selected as suppliers by their potential customers.

Similarly, if α is large enough, the model’s predictions for the size distribution differ
substantively from canonical models of producer dynamics referenced in footnote 2. In
those models, dispersion in producer size results from the accumulation of idiosyncratic

8Thus in contrast to environments such as Hulten (1978) in which producers are price takers, the cost share
of intermediate inputs is not a sufficient statistic for the input–output multiplier.

9The bargaining power parameter is analogous to that of the generalized Nash bargaining solution. The
difference here is that the size of surplus to be split between a supplier and buyer depends on how the buyer
splits surplus with her buyers, etc.

10By now it is well understood that input–output linkages play a key role in shaping how one producer’s
cost of production impacts other producers and ultimately aggregate productivity. The literature on aggregate
fluctuations has focused on how sectoral shocks propagate through an economy—see Long and Plosser (1983),
Horvath (1998), Dupor (1999), Acemoglu et al. (2012), and Carvalho and Gabaix (2013). In the growth liter-
ature, see Jones (2011, 2013) and Ciccone (2002). In the trade literature, Caliendo and Parro (2015) argued
that the welfare impact of changes in tariffs in particular industries depends on the input–output structure.

11The preferential attachment model was designed because network models with uniform arrival of links ex-
hibit link distributions with thin tails, whereas many real-world networks feature link distributions with power-
law tails. In the preferential attachment model, there is an initial network and, over time, new links are formed
and new nodes are born. The probability that a new link involves a particular node is increasing in the number
of links that node already has. Variants of the preferential attachment model of Barabasi and Albert (1999)
have been used to explain the cross-sectional distribution of the firm-to-firm linkages (Atalay et al. (2011))
and the network structure of international shipments of goods (Chaney (2014)). See also Kelly, Lustig, and
Van Nieuwerburgh (2013). The mechanism is similar to proportional random growth models and goes back to
Yule (1925) and Simon (1955).
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productivity or demand shocks. The model here is simple in the sense that there is a single
type of shock: the arrival of a technique. But there are two key differences from produc-
tivity shocks of canonical models. First, a technique represents both a way to produce one
good but also a way of using a different good.12 In other words, the arrival of a technique
is a supply shock to one producer (the buyer) but a demand shock to another producer
(the supplier). Second, a producer is affected by shocks to others (i.e., to customers’ cus-
tomers or to suppliers’ suppliers, etc.). It is the interaction of upstream and downstream
techniques and the higher-order interconnections that generates the rich cross-sectional
patterns.

The model is written in such a way that it nests a simple version of Kortum (1997) when
α is zero—a special case in which the network structure plays no role.13 This special case
provides a backdrop against which one can see the network structure’s role in shaping
economic outcomes.

Finally, the market structure builds on Hatfield, Kominers, Nichifor, Ostrovsky, and
Westkamp (2013) who studied stable outcomes in supply chain networks. The main sub-
stantive difference is that I focus on countably-stable outcomes and splits of surplus con-
sistent with bargaining power, whereas Hatfield et al. (2013) focused on fully stable out-
comes and compared them to competitive equilibria. The main technical difference is that
the environment studied here contains a continuum of agents, which allows the use of the
law of large numbers but raises some technical issues such as defining feasible outcomes.14

1. THE ENVIRONMENT

There is a unit mass of entrepreneurs. Each is the sole producer of a differentiated
good. A representative household derives utility from consuming all of the goods, con-
suming the bundle C = (

∫ 1
0 c

ε−1
ε

j dj)
ε

ε−1 where cj is consumption of good j. The household
supplies L units of labor inelastically.

To produce, an entrepreneur must adopt a technique. A technique allows an en-
trepreneur to produce her good using labor and exactly one other entrepreneur’s good
as an intermediate input. We denote a single technique by φ and the set of all techniques
by Φ. A technique φ involves a particular buyer, denoted b(φ), and a particular supplier,
s(φ), and has a match-specific productivity z(φ). A technique is fully defined by these
three characteristics. The technique describes the production function

y = 1
αα(1 − α)1−α

zxαl1−α� (1)

where y units of the buyer’s good are generated using x units of the supplier’s good and l
units of labor.

The economy’s production possibilities can be completely described by the set of all
techniques available to the different entrepreneurs, Φ. Techniques arrive randomly via a

12The idea that innovation is finding a new use for an existing good is related to recombinant growth of
Weitzman (1998), in which innovation is finding a better way to combine inputs. Scherer (1982) and Pavitt
(1984) showed that roughly three quarters of innovations are for use by others outside the innovating firm’s
sector.

13The model is also related to Alvarez, Buera, and Lucas Jr. (2008), Lucas Jr. (2009), Lucas Jr. and Moll
(2014), and Perla and Tonetti (2014). See Buera and Oberfield (2016) for an elaboration of how the mathe-
matical structure of this model is related to models of idea flows.

14Countable-stability is also related to f -core of Hammond, Kaneko, and Wooders (1989) who studied
deviations of finite coalitions in a continuum economy.
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FIGURE 1.—A graphical representation of the input–output structure. Panel (a) gives an example of a set
of techniques, Φ. Each node is an entrepreneur and edges correspond to techniques. An edge’s direction
indicates which entrepreneur produces the output and which provides the input. An edge’s number represents
the productivity of the technique. In panel (b), solid arrows are techniques that are used in equilibrium.

process described below. Any realization of the set of techniques can be represented by
a weighted, directed graph. Figure 1(a) gives an example of a realization for an economy
with a finite number of entrepreneurs. In the figure, each entrepreneur is a node and each
technique is an edge connecting two nodes. Each edge has a direction, indicating which
entrepreneur would supply the intermediate input and which would produce the output,
and a number corresponding to the technique’s match-specific productivity.

Some entrepreneurs may have multiple ways to produce whereas others may have none.
For the realization of Φ depicted in Figure 1(a), it is infeasible for G to produce, but E has
a technique to produce using good D as an input and another that uses good B. In princi-
ple, she may produce using both, although it will be shown later that, in equilibrium, she
will generically produce using only one. While Figure 1(a) completely describes the econ-
omy’s production possibilities, Figure 1(b) gives an example of entrepreneurs’ selections
of which techniques to use. Such selections, which ultimately depend on prices, corre-
spond to vertical relationships we would observe in equilibrium and jointly determine the
supply chains that are used to produce each good.

The set of techniques Φ is a random set. The number of techniques with which an
entrepreneur can produce her good follows a Poisson distribution with mean M . For each
of those techniques, the identity of the supplier s(φ) is random and uniformly drawn from
all entrepreneurs in the economy. This incidentally implies that the number of techniques
for which an entrepreneur is the supplier also follows a Poisson distribution with mean M .
Each technique’s match-specific productivity, z(φ), is drawn from a fixed distribution with
CDF H.15 Assumption 1 guarantees that the right tail of this distribution is not too thick,
which is sufficient to ensure that aggregate output is almost surely finite.

ASSUMPTION 1: The support of H is bounded below by some z0 > 0 and there exists a
β> ε− 1 such that limz→∞ zβ[1 −H(z)] = 0.

15To keep the notation manageable, I abstract from any ex ante differences in goods’ suitability for use as
an intermediate input for any other type of good or for consumption. In many applications, ex ante asym-
metries across goods would be important (reflecting different industries or countries). The model can easily
accommodate such asymmetries without loss of tractability; see working paper version.
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Φ implicitly determines the supply chains that may be used to produce each good. For
an entrepreneur, a supply chain consists of a technique she can use to produce her good,
a technique that the associated supplier can use, etc. Formally, a supply chain for en-
trepreneur j is an infinite sequence of techniques {φk}∞

k=0 with the property that j = b(φ0)
and s(φk)= b(φk+1) for each k. Supply chains may cycle, in which case the techniques in
the sequence repeat.16 It is feasible for an entrepreneur to produce only if there exists at
least one supply chain to produce that entrepreneur’s good.17,18

2. MARKET STRUCTURE

Terms of trade among entrepreneurs determine entrepreneurs’ choices of inputs, pro-
duction decisions, and productivity. This section describes a market structure and the
terms of trade that arise in equilibrium. The market structure is motivated by the idea
that groups of entrepreneurs that are small (relative to the market) may choose terms
that maximize their mutual gains from trade.

Entrepreneurs engage in monopolistic competition when selling to the representative
household, but sales of goods for intermediate use are governed by bilateral trading con-
tracts specifying a buyer, a supplier, a quantity of the supplier’s good to be sold to the
buyer, and a payment. Given a contracting arrangement, each entrepreneur makes her
remaining production decisions to maximize profit. Goods may not be resold and en-
trepreneurs remit all profit to the household.

The economy is in equilibrium when the arrangement is such that no coalition of en-
trepreneurs (of a specified size) would find it mutually beneficial to deviate by altering
terms of trade among members of the coalition and/or dropping contracts with those not
in the coalition.

2.1. Arrangements and Payoffs

Terms of trade are described by a contracting arrangement. A contract for technique
φ is a double {x(φ)�T(φ)}, where x(φ) is the quantity of good s(φ) to be sold to the
buyer b(φ), and T(φ) is a payment from the buyer to the supplier. An arrangement is a
contract for each technique, {x(φ)�T(φ)}φ∈Φ.19 For some techniques, the arrangement
might specify that x(φ) = T(φ) = 0, which means that the buyer does not use those tech-
niques.

Taking as given the arrangement, the wage, and the household’s demand for its good,
each entrepreneur chooses a price to charge the household for its good and how much

16For example, lumber is useful in the production of an ax, while an ax is useful in the production of lumber.
17In the example with a finite set of entrepreneurs, any supply chain must contain a cycle. With a continuum

of entrepreneurs, supply chains need not cycle and the set of entrepreneurs who have supply chains that cycle
has measure zero.

18The assumptions that production of each good requires the use of some other good as an input and that
chains of these relationships may continue indefinitely follow in the tradition of Leontief (1951) and other
models with roundabout production.

19The notation rules out the possibility of a contract between a buyer and supplier when the buyer does not
have a technique that uses the supplier’s good as an input. Supplemental Material Appendix A.1 (Oberfield
(2018)) shows that this is without loss of generality. Because goods may not be resold, such a transaction can
never be optimal; a buyer would drop any contract with a positive payment whereas a supplier would drop
all other contracts. Supplemental Material Appendix A.1 shows that such transactions are also not essential
off the equilibrium path. The notation also rules out multiple contracts for the same technique. Supplemental
Material Appendix A.1 shows that this restriction can be made without loss of generality as well.
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labor to hire and allocate to each technique. If entrepreneur j uses l(φ) units of labor
with technique φ, then its output of good j produced using that technique is y(φ) ≡

1
αα(1−α)1−α z(φ)x(φ)

αl(φ)1−α, following (1).
For entrepreneur j, there are two subsets of Φ that are directly relevant. Let Uj ≡

{φ ∈ Φ : b(φ) = j} be the set of techniques that designate j as the buyer (those upstream
from j) and let Dj ≡ {φ ∈ Φ : s(φ) = j} be the set of techniques that designate j as the
supplier (those downstream from j). These respectively determine j’s potential suppliers
and potential customers.

Total output of good j and total labor used by j are thus yj ≡ ∑
φ∈Uj

y(φ) and lj ≡∑
φ∈Uj

l(φ), respectively. This output can be sold to the household for consumption or to
other entrepreneurs for intermediate use, which together sum to cj + ∑

φ∈Dj
x(φ).

Given the arrangement, entrepreneur j’s payoff is

Πj = max
pj�cj �{l(φ)}φ∈Uj

pjcj +
∑
φ∈Dj

T (φ)−
∑
φ∈Uj

[
T(φ)+wl(φ)

]
(2)

subject to satisfying the household’s demand

cj ≤ C(pj/P)
−ε� P ≡

(∫ 1

0
p1−ε

j dj

) 1
1−ε

and a technological constraint that total usage of good j cannot exceed total production
of good j:

cj +
∑
φ∈Dj

x(φ) ≤
∑
φ∈Uj

1
αα(1 − α)1−α

z(φ)x(φ)αl(φ)1−α
 (3)

2.2. Feasibility

An allocation consists of quantities of labor and the intermediate input used for and
output derived from each technique {l(φ)�x(φ)� y(φ)}φ∈Φ, and the household’s con-
sumption vector, {cj}j∈[0�1]. An allocation is feasible if it is both resource feasible and chain
feasible. An allocation is resource feasible if it satisfies (3) for each j and the labor resource
constraint, ∫ 1

0

(∑
φ∈Uj

l(φ)

)
dj ≤L


We impose a second requirement, chain feasibility, which is analogous to a no-Ponzi con-
dition. A technique is typically part of many supply chains. While the allocation specifies
the production using each technique, this production can be divided into separate pieces
for use in the various supply chains that pass through that technique. Loosely, chain fea-
sibility ensures that the consumption generated by each supply chain is feasible given the
inputs used at each step in the supply chain.

Defining chain feasibility requires an alternative representation of the allocation that
we label a supply chain representation. Formally, for entrepreneur j, let Ωj denote the
set of supply chains available to produce good j. Recall that each supply chain ω ∈ Ωj

is a sequence of techniques {φn}∞
n=0 with the properties that j is the buyer of the most

downstream technique, that is, j = b(φ0), and that the supplier of each technique is
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the buyer for the technique one step further upstream, s(φn) = b(φn+1) (or equivalently
φn+1 ∈ Us(φn)). I will refer to the technique that is furthest downstream as technique 0 in
the chain and the technique that is n stages upstream from technique 0 as technique n;
a higher number indicates a technique that is further upstream.

A supply chain representation consists of {c(ω)� {yn(ω)�xn(ω)� ln(ω)}∞
n=0}ω∈Ωj�j∈[0�1]. For

each chain ω ∈Ωj , c(ω) is total production of good j for consumption using supply chain
ω, and for each n ∈ {0�1�2� 
 
 
}, {yn(ω)�xn(ω)� ln(ω)} are the quantities of output, inter-
mediate input, and labor used with technique n in the supply chain ω in the production of
c(ω).20 A supply chain representation must satisfy four properties. First, the output in the
final stage exactly matches what is consumed, y0(ω) = c(ω). Second, the intermediate in-
put used at one stage exhausts the output from the previous next stage, xn(ω) = yn+1(ω).
Third, the inputs and output at each step in each chain are consistent with the technology
of the technique used at that stage:

yn(ω) = 1
αα(1 − α)1−α

zn(ω)xn(ω)αln(ω)1−α� (4)

where zn(ω) is the match-specific productivity of technique n of the supply chain. Fourth,
the supply chain representation must actually generate the specified allocation.21 Supple-
mental Material Appendix A.2 provides a more detailed treatment.22

An allocation is chain feasible if there exists a supply chain representation such that, for
every chain,

c(ω)≤ lim inf
k→∞

k∏
n=0

(
1

αα(1 − α)1−α
zn(ω)ln(ω)1−α

)αn




To unpack this definition, note that combining (4) for stages n = 0� 
 
 
 �k for a single chain
ω and using xn(ω) = yn+1(ω) yields c(ω) = xk(ω)α

k+1 ∏k

n=0(
1

αα(1−α)1−α z
n(ω)ln(ω)1−α)α

n .
Chain feasibility for ω imposes that the sequence of intermediate inputs used
further and further upstream in the supply chain ω does not explode, that is,
lim supk→∞[xk(ω)]αk+1 = 1.

2.3. Stability and Equilibrium

An allocation is an equilibrium when no coalition of entrepreneurs (of a specified size)
can find alternative terms of trade that would be mutually beneficial. A coalition is a

20Supply chains overlap. To avoid double counting, the decomposition specifies production of supply chain
ω ∈ Ωj as the production of good j for consumption rather than total output of good j, as the latter includes
production of good j for intermediate use in other supply chains. Since every technique exhibits constant
returns to scale, the decomposition is well-defined.

21For each technique, the supply chain representation defines production using that technique for each
chain that passes through the technique, while the allocation defines total production using that technique. For
the supply chain representation to generate the specified allocation, it must be that the latter is equal to the
sum of the former, summing over all supply chains that pass through the technique. Formally, if Ω(n�φ) is the
set of chains in which φ is technique n, then l(φ) = ∑∞

n=0

∑
ω∈Ω(n�φ) l

n(ω), x(φ) = ∑∞
n=0

∑
ω∈Ω(n�φ) x

n(ω), and
y(φ) = ∑∞

n=0

∑
ω∈Ω(n�φ) y

n(ω). Similarly, it must be that consumption of each good equals the total consump-
tion produced by all supply chains for the good, cj = ∑

ω∈Ωj
c(ω).

22If the allocation is such that each entrepreneur produces using a single technique, there is a unique supply
chain representation; in instances in which at least one entrepreneur produces using multiple techniques, there
are multiple supply chain representations. Nevertheless, for any supply chain representation, there is a unique
allocation.
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set of entrepreneurs, J. For a coalition, a deviation consists of (i) dropping any subset
of contracts that involve at least one entrepreneur in J—setting both the quantity and
the payment specified in the contract to zero; and (ii) altering the terms of any contract
involving a buyer and a supplier that are both members of the coalition.

A dominating deviation for a given coalition is a deviation that would deliver weakly
higher payoffs to all members of that coalition and strictly higher payoffs to at least one
member of that coalition.

An arrangement is N-stable if there are no coalitions of size/cardinality N or smaller
with dominating deviations. The main focus of the paper will be on countably-stable
arrangements—arrangements for which no countable coalition has a dominating devi-
ation, but the text below also discusses the restrictions imposed by pairwise stability
(N = 2). Of course, every countably-stable arrangement is pairwise stable, but not vice
versa.

So that payoffs are well-defined out of equilibrium, we must account for an arrange-
ment that dictates that an entrepreneur is obliged to produce (

∑
φ∈Dj

x(φ) > 0) but re-
ceives no intermediate inputs with which to produce (

∑
φ∈Uj

x(φ) = 0). To this end, I
adopt the convention that, in such a situation, the entrepreneur can meet its obligation at
infinite cost.

Finally, we define an N-stable equilibrium. An N-stable equilibrium is an arrangement
{x(φ)�T(φ)}φ∈Φ, entrepreneurs’ choices, {pj� cj� {l(φ)}φ∈Uj

}j∈[0�1], and a wage w such that
(i) given the wage, total profit, and prices, the consumption choices {cj}j∈[0�1] maximize the
representative household’s utility; (ii) for each j ∈ [0�1], {pj� cj� {l(φ)}φ∈Uj

} maximize j’s
payoff given the arrangement, the wage, and the household’s demand; (iii) labor and final
goods markets clear; (iv) there are no dominating deviations available to any coalition of
size/cardinality N ; (v) the equilibrium allocation is feasible.

2.4. Properties of Equilibria

Let λj be entrepreneur j’s marginal cost, the multiplier on (3).23 For any arrangement,
it is optimal for j to sell her good to the household at the usual markup over marginal
cost, pj = ε

ε−1λj , and to hire labor so that her wage bill for using technique φ ∈ Uj is
wl(φ)= (1 − α)λjy(φ).

It will be convenient to define qj ≡ w
λj

to be the inverse of j’s marginal cost in units
of labor. qj is the efficiency with which good j can be produced, or for shorthand, j’s
efficiency. Let Q ≡ (

∫ 1
0 qε−1

j dj)
1

ε−1 be the usual Dixit–Stiglitz productivity aggregator of
entrepreneurs’ efficiencies. Proposition 1 characterizes the implications of both pairwise
stability and countable stability and shows that Q is a measure of aggregate productivity
for the economy.

PROPOSITION 1: In any pairwise-stable equilibrium, entrepreneur j sells cj = qε
jQ

1−εL
units of her good to the household for consumption, the household’s consumption aggregate
is

C =QL� (5)

23Note that j’s marginal cost would be infinite, that is, λj = ∞, if either Uj is empty or j has no intermediate
inputs (i.e.,

∑
φ∈Uj

x(φ) = 0).
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and entrepreneurs’ efficiencies satisfy

qj = max
φ∈Uj

z(φ)qα
s(φ)� or qj = 0 if Uj is empty, (6)

qj ≤ sup
ω∈Ωj

∞∏
n=0

[
zn(ω)

]αn
� or qj = 0 if Ωj is empty. (7)

In any countably-stable equilibrium,

qj = sup
ω∈Ωj

∞∏
n=0

[
zn(ω)

]αn
� or qj = 0 if Ωj is empty. (8)

Every countably-stable equilibrium is efficient. If H is atomless, then with probability 1, there
is an essentially unique allocation consistent with countable stability.

Equation (6) summarizes how pairwise stability connects each entrepreneur’s marginal
cost to that of its suppliers. The proof shows that, for every technique,

λb(φ) ≤ 1
z(φ)

λα
s(φ)w

1−α� with equality if x(φ) > 0
 (9)

To understand this, note that for any technique, the buyer’s marginal cost of output from
using that technique is 1

z(φ)
χα

s(φ)w
1−α, where χs(φ) is the shadow value the buyer places

on the supplier’s good. The key implication of pairwise stability is that, for each tech-
nique that is actually used (i.e., x(φ) > 0), the buyer’s shadow value of an input must
equal the supplier’s marginal cost, as this maximizes the bilateral gains from trade.24 For
entrepreneur j, collecting these conditions for all techniques in Uj and using qj = w/λj

gives (6).
Along similar lines, (5) says that in any pairwise stable equilibrium, aggregate produc-

tivity is simply the usual Dixit–Stiglitz productivity aggregator of entrepreneurs’ efficien-
cies. The key step in the proof is to show that pairwise stability implies that each en-
trepreneur’s marginal cost—measured in units of labor—is equal to the quantity of labor
used across all stages in all supply chains to produce a unit of that entrepreneur’s good.
In other words, pairwise stability is sufficient to ensure that no supply chain suffers from
double marginalization; each pair maximizes their bilateral gains from trade, which en-
sures that the quantity in the contract is such that the supplier’s marginal cost is equal to
the buyer’s shadow value of the input.

Equation (7) is an implication of chain feasibility. For a single chain, ω ∈ Ωj , this in-
equality follows from combining (6) for entrepreneur j, for its suppliers, for its suppliers’
suppliers, etc. and imposing chain feasibility.25

Equation (8) shows that if an arrangement is countably-stable, entrepreneur j’s effi-
ciency equals that of its most efficient supply chain.26 The proof shows that, if there is

24If λb(φ) <
1

z(φ)
λα
s(φ)w

1−α, the buyer and supplier could increase their bilateral surplus by lowering x(φ).
Such a deviation is always possible unless x(φ) = 0. If λb(φ) >

1
z(φ)

λα
s(φ)w

1−α, the buyer and supplier could
increase their bilateral surplus by raising x(φ).

25Chain feasibility rules out solutions to (9) in which λs(φ) = λb(φ) = 0. While there is always such a solution
to (9), there is no feasible allocation of labor that would deliver the supplier’s good at a marginal cost of zero.

26The restrictions placed by pairwise stability on entrepreneurs’ efficiencies are relatively weak. One clear
example: For any Φ, there is always a pairwise stable equilibrium in which no entrepreneur produces, with
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an entrepreneur j with qj < supω∈Ωj

∏∞
n=0[zn(ω)]αn , then there is a countable coalition

comprising entrepreneurs that form some chain ω ∈ Ωj with
∏∞

n=0[zn(ω)]αn > qj with a
dominating deviation in which each of those entrepreneurs produces slightly more. This
would raise j’s profit enough to allow compensation to all of those entrepreneurs in the
chain.

The proposition states that every countably-stable equilibrium is efficient. The proof
shows that if a planner controlled production throughout the entire supply chain ω ∈ Ωj

and allocated some quantity of labor l optimally throughout the chain, then it would solve
c(ω)= max{ln(ω)}

∏∞
n=0(

1
αα(1−α)1−α z

n(ω)ln(ω)1−α)α
n subject to

∑
ln(ω) ≤ l. With the optimal

allocation of labor across stages, the planner would face the indirect production function
c(ω) = ∏∞

n=0[zn(ω)]αnl. Thus, in every equilibrium, each entrepreneur’s marginal cost
matches the planner’s marginal shadow cost of her good.27

Proposition 1 also states that, generically, the allocation of goods and labor is essen-
tially unique. The exception is if some entrepreneur j has access to two techniques that
would both deliver efficiency qj . In that case, countable stability does not determine how
the entrepreneur splits her production across the two techniques. Given the stochastic
process of the arrival of techniques, however, the probability that any entrepreneur has
two techniques that deliver exactly the same efficiency is zero. Thus, with probability 1,
the set of entrepreneurs with access to two techniques that deliver the same efficiency
has measure zero. Finally, payments between buyers and suppliers have no impact on the
equilibrium allocation because all entrepreneurs remit their profits to the household.28

2.5. Stability and Payoffs

This section describes how countable stability restricts the payoffs that entrepreneurs
can attain and shows the existence of a class of countably-stable equilibria. Proposition 1
states that countable stability pins down the allocation (the quantities traded), but it is
silent about payments from buyers to suppliers, and hence about payoffs. We show now
that for each pair in a buyer-supplier relationship, there is a range of payments consistent
with stability. In other words, there are many ways buyer-supplier pairs can share their
joint surplus.29 This multiplicity, however, is inessential, because all profits are turned
over to the household.

Proposition 2 describes essential upper and lower bounds to the transfers of surplus
among entrepreneurs. These bounds apply to a subset of entrepreneurs that we call
acyclic. A path from j to j′ is defined as a finite sequence of distinct entrepreneurs be-
ginning with j and ending with j′ along with a corresponding sequence of techniques

qj = 0�∀j. Other examples can be constructed for special cases of Φ. Suppose that Φ is such that entrepreneurs
ordered. That is, the entrepreneurs can be divided into sets indexed by n ∈ {0�1� 
 
 
} and any technique for
which the buyer is in set n has a supplier in set n + 1. Suppose that there is a pairwise-stable equilibrium
in which entrepreneurs’ efficiencies are {qj}. Then, for any t ≤ 1, there is a pairwise-stable equilibrium in
which entrepreneurs’ efficiencies are {q̃j}, where q̃j = tα

−nj
qj , where j is in set nj . Such equilibria are robust to

deviations by any finite coalition but are not countably stable.
27Markups on sales to the household distort the consumption-leisure margin, but since labor is supplied

inelastically, there is no impact on the allocation of goods and labor. If labor were supplied elastically or if
demand elasticities varied across goods, efficiency would require correcting the monopoly markups on sales to
the household.

28If entrepreneurs made entry/exit decisions or chose the intensity with which to search for new techniques,
the ex post distribution of profit across entrepreneurs would play a more central role.

29The range is analogous to a Nash-bargaining set, with one important difference. Here, the split between a
buyer and supplier determines how much surplus there is to be split between the supplier and her supplier.
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linking each consecutive pair of entrepreneurs. We call entrepreneur j acyclic if, for any
other entrepreneur j′, there is at most one path linking j to j′. We label the set of acyclic
entrepreneurs J∗ and define Φ∗ to be the set of techniques for which the buyer and sup-
plier are acyclic.30 Note that with probability 1, the realization of Φ is such that almost all
entrepreneurs are acyclic, that is, J∗ has measure 1.31

To characterize payoffs, it will be useful to express each entrepreneur’s profit in terms
of surplus, decomposing it into three components: the surplus it generates from sales to
the household; transfers of surplus from buyers; and transfers of surplus to suppliers. As
shown in Supplemental Material Appendix A.4, in any countably-stable equilibrium, j’s
profit can be expressed as

Πj = πj +
∑
φ∈Dj

τ(φ)−
∑
φ∈Uj

τ(φ)� (10)

where πj ≡ (pj − λj)cj and τ(φ) ≡ T(φ) − λs(φ)x(φ). Given the arrangement and indi-
vidual choices, πj is the profit from sales of good j to the household when using λj as a
measure of j’s cost and τ(φ) is the value of the payment to the supplier in φ above the
cost of the intermediate inputs when using λs(φ) as a measure of the supplier’s cost.32

We define the surplus generated by a technique to be its contribution to all en-
trepreneurs’ profit from sales to the household. The contribution to entrepreneur j’s
profit from sales to the household is the difference between j’s actual profit πj and that
of its best alternative, which we label πj\φ. πj\φ is the profit j would earn from sales to the
household if it were unable to use any supply chain that passed through the technique φ.33

Let B(φ) be the set of all entrepreneurs with supply chains that pass through φ. The sur-
plus generated by technique φ is then

S(φ) ≡
∑

j∈B(φ)

πj −πj\φ


Proposition 2 says that, for almost all techniques—those that are acyclic—countable
stability requires that the transfer of surplus from buyer to supplier is bounded by zero

30Formally, a path from j to j′ is a finite sequence of distinct entrepreneurs {jk}nk=0 with j = j0 and j′ = jn and
a finite sequence of techniques {φk}nk=1, such that, for each k = 1� 
 
 
 � n, either jk = b(φk) and jk−1 = s(φk)
or vice versa (i.e., we ignore the direction of each technique in the sequence). In graph theory, a connected
component is a subgraph in which any two vertices are connected by a path but no vertex in the component is
connected to a vertex outside the component. A tree is a connected component in which there is exactly one
path linking any two vertices. j is acyclic if, in the graph induced by Φ (and ignoring the direction of each link),
j’s connected component is a tree. The subgraph comprising entrepreneurs in J∗ and techniques in Φ∗ is a
forest (a collection of trees).

One reason stronger statements can be made about acyclic entrepreneurs is that characterizing the “best
alternative supply chain” that would be used after a contract is dropped as part of a deviation is easier for
entrepreneurs that are acyclic than for those that are not.

31For any entrepreneur j, the set of entrepreneurs {j′} for which there is a path from j to j′ is countable and
thus has measure zero. Therefore, the probability that j has two paths to any single entrepreneur is also zero.

32Equation (10) follows from cost minimization and pairwise stability, which imply that for every technique,
wl(φ)
1−α

= λs(φ)x(φ)

α
= λb(φ)y(φ).

33Formally, define Ωj\φ be the set of chains to produce good j that do not pass through the technique φ.
Define qj\φ ≡ supω∈Ωj\φ

∏∞
n=0[zn(ω)]αn to be the efficiency delivered to j by its best supply chain that does not

pass through technique φ. Finally, let πj\φ ≡ 1
ε−1 (qj\φ/Q)ε−1wL. Note that if j’s best supply chain does not

pass through φ, then πj = πj\φ, that is, φ contributes no surplus to j.
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and the total surplus generated by the technique. Further, it asserts the existence of a class
of countably-stable equilibria that spans those bounds.

PROPOSITION 2: In any countably-stable equilibrium, τ(φ) ∈ [0�S(φ)] for each φ ∈ Φ∗.
For any β ∈ [0�1], there exists a countably-stable equilibrium in which τ(φ) = βS(φ)�
∀φ ∈ Φ∗ and τ(φ)= 0�∀φ /∈Φ∗.

If there were a technique for which τ(φ) < 0, the supplier would deviate by dropping
the contract, and the entire production chain would shrink production efficiently so that
the supplier’s marginal cost would remain unchanged. Similarly, if there were a tech-
nique for which τ(φ) > S(φ), the buyer would drop the contract and purchase goods
from the supplier associated with its next best technique. That entire supply chain would
expand production efficiently so that that supplier’s marginal cost is unchanged. Any en-
trepreneur downstream from the buyer would also adjust production optimally by having
her best alternative supply chain efficiently expand production as needed.

The second part of Proposition 2 describes a class of countably-stable equilibria for
which there is a natural notion of bargaining power. For each β, there is an equilibrium
in which the transfer of surplus from buyer to supplier equals a fraction β of the total
surplus generated by that technique.34

While bargaining power affects payments among entrepreneurs (and hence transac-
tions data we might observe), it has no impact on the allocation. Proposition 1 implies
that the key to solving for aggregate output is to characterize entrepreneurs’ efficiencies.
Given the network of techniques, Φ, this can be done using (6). One approach is to look
for a vector of efficiencies {qj}j∈[0�1] that is a fixed point of (6).35 However, with a contin-
uum of entrepreneurs, this is neither computationally feasible nor would it be particularly
illuminating. Section 3 describes an approach that uses (6) along with the probabilistic
structure of the model to sharpen the characterization of the equilibrium allocation.

3. USING THE PROBABILISTIC STRUCTURE TO CHARACTERIZE THE EQUILIBRIUM

The economy’s production possibilities—the techniques available to the different
entrepreneurs—are stochastic. Given the realization of Φ, the contracting arrangement
and individual production choices determine each entrepreneur’s efficiency. This section
uses the law of large numbers to solve for the distribution of efficiencies that is likely
to arise given this probabilistic structure. While any individual entrepreneur’s efficiency
varies across realizations of the economy, the cross-sectional distribution of efficiencies
does not. This section shows that the CDF of this cross-sectional distribution is the unique
solution to a fixed point problem.

Given Φ, let F(q) be the fraction of entrepreneurs with efficiency no greater than q
in equilibrium. This function is endogenous and will need to be solved for. The strategy
exploits the fact that F describes the distribution of an entrepreneur’s efficiency and that
of each of its potential suppliers.

34For the properties of the equilibrium described in Section 4 such as the size distribution and the cross-
sectional correlations, one can safely ignore sets of measure zero.

35Taking logs of both sides gives an operator T , where the jth element of T({logqj}j∈[0�1]) is
maxφ∈Uj

{logz(φ)+α logqs(φ)}. T satisfies monotonicity and discounting. If the support of logz were bounded,
the operator would be a contraction on the appropriately bounded function space. This approach to solving
the model is useful for simulations with a finite set of entrepreneurs.
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What is the probability that an entrepreneur has efficiency no greater than q? This de-
pends on how many techniques she discovers and the efficiency each of those techniques
might deliver. The number of upstream techniques available to entrepreneur j, |Uj|, fol-
lows a Poisson distribution fully described by its mean, M .

Two elements determine the cost-effectiveness of each technique: (i) its productivity,
z(φ), drawn from an exogenous distribution H, and (ii) the efficiency of the supplier,
qs(φ). Since the identity of the supplier is drawn uniformly, the probability that the sup-
plier’s efficiency is no greater than qs is F(qs).

Let G(q) be the probability that the efficiency delivered by a single random technique
is no greater than q. Recalling that the efficiency delivered by the technique is z(φ)qα

s(φ),
this is

G(q) =
∫ ∞

z0

F
(
(q/z)1/α

)
dH(z)
 (11)

To interpret this, note that for each z, F((q/z)1/α) is the portion of potential suppliers that,
in combination with that z, leaves the entrepreneur with efficiency no greater than q.

Now, the probability that, given all of its techniques, an entrepreneur has efficiency no
greater than q is

Pr(qj ≤ q) =
∞∑
n=0

Mne−M

n!︸ ︷︷ ︸
Pr(n techniques)

G(q)n︸ ︷︷ ︸
Pr(All n techniques are≤q)

= e−M[1−G(q)]


To interpret this last expression, note that if M[1 −G(q)] is the mean of a Poisson distri-
bution (the arrival of techniques that deliver efficiency better than q), then e−M[1−G(q)] is
the probability of no such techniques.

The law of large numbers implies that, with probability 1, Pr(qj ≤ q) = F(q).36 Using
the expression for G(q) from (11) gives a fixed point problem for the CDF of efficiency F :

F(q) = e
−M

∫ ∞
z0

[1−F((q/z)1/α)]dH(z)

 (12)

This recursive equation is the key to characterizing the equilibrium.
Consider the space F̄ of right-continuous, non-decreasing functions f : R+ 
→ [0�1],

and consider the operator T on this space defined as

Tf(q) ≡ e
−M

∫ ∞
z0

[1−f ((q/z)1/α)]dH(z)



Supplemental Material Appendix B constructively defines a subset F ⊂ F̄ that depends
on M and H. Proposition 3 shows that the equilibrium allocation is the unique fixed point
of T on F . The proof, contained in Supplemental Material Appendix B, uses Tarski’s
fixed point theorem to show existence, which also provides a numerical algorithm to solve
for it.

36The proof of Proposition 3 uses such a law of large numbers for a continuum of random variables described
by Uhlig (1996). To use this, one must verify that entrepreneurs’ efficiencies are pairwise uncorrelated. That is
not immediately obvious in this context, as it is possible that two entrepreneurs’ supply chains overlap or that
one is in the other’s supply chain. However, by assumption, the network is sufficiently sparse that with high
probability the supply chains will not overlap: there is a continuum of entrepreneurs, but only a countable set
of those are in any of a given entrepreneur’s potential supply chains. Therefore, for any two entrepreneurs, the
probability that their supply chains overlap is zero.
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PROPOSITION 3: There exists a unique fixed point of T on F , F . With probability 1, F is the
CDF of the cross-sectional distribution of efficiencies of every countably-stable equilibrium,
and aggregate productivity is Q = (

∫ ∞
0 qε−1 dF(q))

1
ε−1 .

The qualitative features of the economy depend on whether the average number of
techniques, M , is greater or less than 1. If M ≤ 1, there are so few techniques that the
probability that any individual entrepreneur has access to a supply chain is zero.37 In
the more interesting case in which M exceeds the critical value of 1, there are at least
three fixed points of the operator T on F̄ , only one of which corresponds to the equilib-
rium.38 Because of the multiplicity of fixed points, it is important to restrict the fixed point
problem to the function space F , a space for which there is a unique fixed point which
corresponds to the equilibrium.

Rather than characterizing how entrepreneurs’ efficiencies directly depend on the set
of production possibilities Φ, Proposition 3 shows how the cross-sectional distribution of
efficiencies depends on the three primitives that generate Φ: the distribution from which
technique-specific productivities are drawn, H; the average number of techniques per
entrepreneur, M ; and α. Section 4 uses this cross-sectional distribution to characterize
how these primitives impact productivity and the organization of production.

4. CROSS-SECTIONAL IMPLICATIONS

This section studies how selection of suppliers shapes cross-sectional features of the
economy such as how input–output links are distributed across entrepreneurs, the size
distribution, and aggregate productivity.

To illustrate these implications, I focus on a parametric assumption that proves to be an-
alytically tractable, allowing for closed-form expressions for the distribution of efficiencies
and for aggregate output, and providing a transparent connection between the features
of the environment and economic outcomes.

37As shown in Supplemental Material Appendix B.4, the probability that an entrepreneur has no supply
chains is the smallest root ρ of ρ= e−M(1−ρ). For M ≤ 1, the smallest root is 1, while for M > 1, it is strictly less
than 1. This uses a standard result from the theory of branching processes. If M < 1, T is a contraction, with
the unique solution f = 1. A phase transition when the average number of links per node crosses 1 is a typical
property of random graphs, a result associated with the Erdős–Renyi theorem. Kelly (1997) gave such a phase
transition an economic interpretation.

38There are two solutions in which f (q) is constant for all q which stem from the fact that equation (12) is
formulated recursively. The first is f (q) = 1 for all q, which corresponds to zero efficiency (infinite marginal
cost) for all goods; if the marginal cost of every input is infinite, then the marginal cost of each output is infinite
as well. This allocation is feasible and pairwise stable but not countably stable. A second, f (q) = ρ ∈ (0�1),
implies infinite efficiency for entrepreneurs with supply chains and zero efficiency for those without; if inputs
have zero cost, then output can be produced at zero cost. As discussed in footnote 25, this does not correspond
to a feasible allocation, as it violates chain feasibility.

Each of these correspond to a fixed point of (6). Multiple solutions to first-order conditions are actually a
typical feature of models with roundabout production in which a portion of output is used simultaneously as
an input. If the same good enters a technological constraint as both an input and an output, the price of that
good will be on both sides of a first-order condition. Consequently, the first-order condition will be satisfied if
the price takes the value of zero or infinity. One can usually sidestep this issue by finding an alternative way
to describe the production technology, that is, solving for final output as a function of primary inputs. Much
of the work in the proof of Proposition 3 is in finding and characterizing such an alternative description of
production possibilities.
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ASSUMPTION 2: For each producer, the number of upstream techniques with match-
specific productivity greater than z follows a Poisson distribution with mean mz−ζ , with
ζ > ε− 1.

An economy that satisfies Assumption 2 can be interpreted as the limit of a sequence of
economies that satisfies Assumption 1.39 Consider an economy that satisfies Assumption 1
in which each technique’s match-specific productivity is drawn from a Pareto distribution,
H(z) = 1 − (z/z0)

−ζ . The shape parameter ζ governs the thickness of the right tail—
smaller ζ corresponds to a thicker tail—and there is a minimum cutoff z0. The sequence
of economies takes z0 → 0, holding fixed the arrival rate of techniques above any pro-
ductivity level, M[1 − H(z)]. Formally, define m to satisfy M = mz−ζ

0 . m, a normalized
measure of techniques, is defined this way so that for any z ≥ z0, the arrival rate of tech-
niques above z is M[1 − H(z)] = mz−ζ . An economy that satisfies Assumption 2 is the
limit of a sequence of such economies as z0 → 0 holding m fixed.40

Under Assumption 2, every solution F to equation (12) is the CDF of a Frechet distri-
bution. To see this, note that H(z) = 1 − ( z

z0
)−ζ and M = mz−ζ

0 imply that equation (11)
becomes

M
[
1 −G(q)

] = mz−ζ
0

∫ ∞

z0

[
1 − F

(
(q/z)1/α

)]
ζzζ

0z
−ζ−1 dz

= q−ζm

∫ (q/z0)
1/α

0

[
1 − F(x)

]
αζxαζ−1 dx�

where the second line uses the change of variables x = (q/z)1/α. For any q, as z0 → 0,
this expression approaches q−ζ multiplied by a constant. Label this constant θ, so that
equation (12) can be written as

F(q) = e−θq−ζ
�

the CDF of a Frechet random variable. The mean of the distribution is increasing in θ,
the location parameter, which was defined to satisfy θ =m

∫ ∞
0 [1−F(x)]αζxαζ−1 dx. Using

F(q) = e−θq−ζ and integrating gives θ = �(1 − α)mθα, or more simply,

θ = [
�(1 − α)m

] 1
1−α � (13)

where �(·) is the gamma function.41

The efficiency distribution inherits the tail behavior of the match-specific productivity
draws; in the expression for F , the exponent ζ is the same as that of the Pareto distribu-
tion H. As one might expect, θ is increasing in the (normalized) number of techniques per
entrepreneur: an entrepreneur with more options to choose from will tend to have higher
efficiency. The other determinant of θ is α; its role will be discussed in detail below.

39This type of distributional assumption can be traced back to at least Houthakker (1955), although he did
not make a formal argument about a limit. Kortum (1997) showed that his model is well-behaved asymptoti-
cally under this type of functional form assumption.

40Note that in this limit, the arrival rate of techniques grows without bound (M → ∞) while the distribution
of match-specific productivity for any single technique deteriorates (H(z) → 1). The normalization ensures
that these occur at the same rate so that the limiting economy is well-behaved. In the limit, the measure of
entrepreneurs with no techniques (e−M ) shrinks to zero.

41θ = �(1 − α)mθα has three nonnegative roots: the one in equation (13), zero, and infinity. The latter two
correspond to the two constant fixed points of equation (12), as discussed in footnote 38.
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4.1. Stars and Superstars

An entrepreneur’s efficiency depends on the arrival of upstream techniques and the
availability of efficient supply chains. An entrepreneur’s downstream techniques deter-
mine the demand for the entrepreneur’s good for use as an intermediate input. This sec-
tion studies how the interaction of upstream and downstream techniques determine an
entrepreneur’s size and contribution to aggregate productivity.

Proposition 4 characterizes how customers are distributed across suppliers.

PROPOSITION 4: Suppose Assumption 2 holds.
1. Among entrepreneurs with efficiency q, the number of actual customers follows a Pois-

son distribution with mean m
θ
qαζ .

2. Among all entrepreneurs, the distribution of customers asymptotically follows a power
law with exponent 1/α: Pr(# customers ≥ n) ∼ 1

�(1−α)1/α n
−1/α.

PROOF SKETCH: For any technique, let F̃(x) be the probability that the potential buyer
has no other techniques that deliver efficiency better than x. Since all such potential buyers

have at least one upstream technique, this is F̃(x) ≡
∑∞

n=1 G(x)n−1 e−MMn

n!
1−e−M = F(x)−e−M

G(x)(1−e−M)
. Note

that limz0→0 F̃(q) = F(q).
Consider an entrepreneur with efficiency q. A single downstream technique with pro-

ductivity z would deliver efficiency zqα to its potential customer, and F̃(zqα) is the prob-
ability that the potential customer has no better alternative techniques. Since the number
of potential customers is Poisson with mean M , the number of actual customers follows
a Poisson distribution with mean M

∫ ∞
0 F̃(zqα)dH(z). Under Assumption 2, this equals

m
∫ ∞

0 F(zqα)ζz−ζ−1 dz, and integrating yields the first result.
Integrating over entrepreneurs of different efficiencies, the mass of entrepreneurs with

n customers is
∫ ∞

0
e
− m

θ qαζ
( mθ qαζ)n

n! dF(q) = ∫ ∞
0

une−u

n!
e−[�(1−α)u]−1/α

�(1−α)
1
α α

u− 1
α−1 du. The second result

follows from the fact that a mixture of Poisson distributions inherits the right tail behavior
of the mixing distribution as long as that mixing distribution, in this case e−[�(1−α)u]−1/α

�(1−α)
1
α α

u− 1
α−1,

asymptotically follows a power law. Q.E.D.

These properties are illustrated in Figure 2. Figure 2(a) shows the average number
of customers at each quantile in the efficiency distribution for different values of α. As
one would expect, each curve in Figure 2(a) is increasing, indicating high-efficiency en-
trepreneurs attract more customers.

If α is larger, the high-efficiency entrepreneurs capture an even larger share of cus-
tomers. There is a single crossing property that is evident in Figure 2(a): with higher α,
the expected number of customers is more steeply increasing with efficiency.42

Why do higher-efficiency entrepreneurs attract proportionally more customers when α
is higher? Recall that the efficiency delivered by a single technique is z(φ)qα

s(φ). A tech-
nique is more likely to be used by the potential customer when the technique has high
match-specific productivity and when the supplier has high efficiency. α is thus the elas-
ticity of the efficiency delivered by a technique to the supplier’s efficiency. When α is

42Among entrepreneurs at the �th quantile of the efficiency distribution (those with efficiency F−1(�)), the
distribution of customers is Poisson with mean log[1/�]−α

�(1−α)
. Taking the log of this expression, it is easy to see that,

across α, this satisfies a single crossing property; the curve is increasing more sharply for higher α.
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FIGURE 2.—Distribution of customers. Panel (a) shows the mean number of actual customers for each
quantile in the efficiency distribution. Panel (b) gives the mass of entrepreneurs with n customers on a log-log
plot. Under Assumption 2, the curves in each plot depend only on α.

low, the supplier’s efficiency is less important relative to the match-specific productivity
because the impact on the technique’s efficiency is muted. In contrast, when α is large,
higher-efficiency producers are more likely to be selected by each of their potential cus-
tomers.43

The second result of Proposition 4 describes the unconditional distribution of cus-
tomers across entrepreneurs, and this is plotted in Figure 2(b) for different values of α.
When α is larger, the distribution has a thicker tail, as the high-efficiency entrepreneurs
are more likely to attract a disproportionate share of their potential customers. In
other words, when α is large, the equilibrium network features more star suppliers—
entrepreneurs with many customers. This is illustrated more concretely by Figure 3. In
each figure, the set of techniques, Φ, is exactly the same, but α is larger in panel (b).

The model thus provides a mechanism for a skewed cross-sectional distribution of links
which complements that of the influential preferential attachment model of Barabasi and
Albert (1999). Here, the extra variation stems from selection. Because entrepreneurs dif-
fer in marginal cost, they also differ in their likelihood of being selected by potential
customers. Some of those entrepreneurs with many potential customers are able to offer
lower prices and win over a larger fraction of those potential customers. While the dis-
tribution of potential customers follows a Poisson distribution, the distribution of actual
customers exhibits more variation and asymptotically follows a power law.

Both the conditional means and unconditional distribution of customers depend on
a single parameter, α. Notably absent is the parameter ζ which governs variation in en-
trepreneurs’ efficiencies: the standard deviation of logq is 1

ζ
π√

6
. In particular, even if there

is arbitrarily little variation in entrepreneurs’ marginal costs (i.e., ζ is large), the distribu-
tion of customers across entrepreneurs would follow a power law with exponent 1/α, and
entrepreneurs with high efficiency would have a disproportionate share of customers.

Why is the distribution of customers independent of ζ? ζ actually plays two offset-
ting roles. The distribution of customers depends on both the variation in cost of inputs
and the likelihood that a potential customer would forgo a technique with better match-
specific productivity for one that relies on less expensive inputs. The latter depends on

43Another way to see this is to study how the entrepreneurs’ efficiencies covary with number of customers.
Supplemental Material Appendix C.1 shows that Cov(logq�# customers)

St. Dev.(logq) =
√

6
π

∫ 1
0

x−α−1
1−x

dx, which is increasing in α.
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FIGURE 3.—Equilibrium supply chains and α. This figure shows entrepreneurs’ choices of techniques. The
set of techniques, Φ, is held fixed; the only difference is the value of α. The dark edges represent techniques
that are used. M = 15 and H(z) = 1 − z−2 for z ≥ 1.

magnitude of variation in technique-specific productivity draws. If all techniques had the
same productivity (same z), each potential buyer would simply select the technique with
the least expensive input, and the distribution of customers would be heavily skewed to-
ward the most efficient entrepreneurs. In contrast, if all inputs could be purchased at the
same cost, each buyer would simply choose the technique with the best fit (highest z).
In that case, customers would be relatively evenly distributed across entrepreneurs; the
customer distribution would be Poisson. Thus a key driver of the heterogeneity in the dis-
tribution of customers is the magnitude of variation in match-specific productivity draws
relative to the magnitude of variation in suppliers’ marginal costs.

A noteworthy feature of the roundabout nature of production is that the parameter ζ
drives variation in both. When ζ is smaller so that there is more variation in productivity
draws, there is endogenously more variation in suppliers’ cost; the suppliers’ costs de-
pend on the match-specific productivity draws of their own upstream techniques.44 Thus
a smaller ζ compresses the distribution of customers by increasing the variation in match-
specific productivity draws but also expands the distribution of customers by increasing
the variation of potential suppliers’ cost of production. These two channels exactly offset.

The Role of Functional Forms

At this point, it is worth commenting on the role of Assumption 2. One reason to focus
on Assumption 2 is that it is a special case in which the model has determinate cross-
sectional patterns that do not depend on the scale of the economy. For example, the
distribution of customers is independent of m. If m were larger, each entrepreneur would
have more potential customers. However, on average, the number of customers does not

44As mentioned above, the distribution of efficiencies inherits the tail of the distribution of productivity
draws.
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increase because of a countervailing force: a larger m also raises the number of alter-
natives available to each of those potential customers. These offset each other, and the
scale-free nature of Assumption 2 ensures that they offset exactly.45

However, this assumption is not crucial to the main results. Two results can be shown.
The first result is fairly intuitive: because customers base their selection of suppliers partly
on prices, the distribution of actual customers exhibits more variation than the distribu-
tion of potential customers.46 In other words, selection on prices is a mechanism that leads
to increased heterogeneity in engagement in input–output linkages.

The second result is that the prevalence of star suppliers—and the entire distribu-
tion of customers—is independent of the variation in entrepreneurs’ marginal cost. To
see that this result does not depend on Assumption 2, consider the thought experi-
ment of an economy indexed by γ. Relative to the benchmark, in the γ-economy each
z is replaced by ẑ ≡ zγ , so that Hγ(ẑ) ≡ H(ẑ1/γ); the benchmark economy is recov-
ered by setting γ = 1. In the γ-economy, the efficiency delivered by supply chain ω is∏∞

n=0[ẑn(ω)]αn = ∏∞
n=0[zn(ω)γ]αn = (

∏∞
n=0[zn(ω)]αn)γ . There are two implications. First,

q̂j = qγ
j , which means that the dispersion of the log of entrepreneurs’ efficiencies is pro-

portional to γ. Second, the ordinal ranking of the supply chains is independent of γ. As a
consequence, the economy’s equilibrium input–output linkages are independent of γ.

4.2. The Distribution of Employment

The distribution of employment across producers has long generated considerable in-
terest from economists.47 This section builds on Section 4.1 to characterize the determi-
nants of the distribution of employment across entrepreneurs. An entrepreneur produces
output to sell to the household for consumption and to other entrepreneurs for inter-
mediate use. Entrepreneur j’s choice of employment ultimately depends on the indirect
demand for j’s good by all other entrepreneurs that produce using supply chains that go
through j.

Because an entrepreneur’s size depends on the size of each of its customers, the dis-
tribution of employment can be characterized recursively. This characterization relies on
the fact that a customer’s size is sufficient to summarize the indirect demand for j’s la-
bor by any other entrepreneurs downstream from that customer. Let L(·) be the CDF of
the overall size distribution and let L(·|q) be the CDF of the conditional size distribution
among entrepreneurs with efficiency q, so that L(l)= ∫ ∞

0 L(l|q)dF(q). Proposition 5 de-
scribes, for most parameter values, the model’s implications for these distributions.

PROPOSITION 5: Suppose that Assumption 2 holds and that ρ ≡ min{ 1
α
� 1
(ε−1)/ζ } is not

an integer. Then right tails of the overall and conditional distributions of employment follow
power laws with exponent ρ:

45Recall that Assumption 2 can be interpreted as the limit of a sequence of economies as z0 → 0. Supple-
mental Material Appendix C.1 describes how the distribution of customers changes as this sequence converges
to its limit.

46Formally, the coefficient of dispersion (the ratio of variance to mean) of actual customers is larger than
that of potential customers. This follows from the fact that the variance of a Poisson distribution is the same as
its mean and the law of total variances. For potential customers, the mean and variance of potential customers
is M , so the coefficient is 1. Let nj be the number of j’s actual customers. E[n] = 1, and Var(n) = Var(E[n|q])+
E[Var(n|q)]. The first term is weakly positive, and the second term is E[Var(n|q)] = E[E(n|q)] = 1.

47Among the many, see Lucas Jr. (1978), Jovanovic (1982) Hopenhayn (1992), Axtell (2001), Klette and
Kortum (2004), Luttmer (2007), Rossi-Hansberg and Wright (2007), and Arkolakis (2016).
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1. 1 −L(l)∼ Kl−ρ,
2. 1 −L(l|q)∼ Kmqαζ

θ
(αl)−ρ,

where K ≡ 1
1−αρ

((1−α)I ε−1
ζ ≥α

+αI
α≥ ε−1

ζ
)ρ

�(1−ρ−1)ρ
.

PROOF SKETCH: Because labor is used to produce output for each destination—for
each customer and for the household—rather than working with the overall and condi-
tional size distributions, L and {L(·|q)}, it is easier to work with their respective Laplace–
Stieltjes transforms, L̂(s) ≡ ∫ ∞

0 e−sl dL(l) and L̂(s|q) ≡ ∫ ∞
0 e−sl dL(l|q). The first part of

the proof derives fixed point problems for these transforms. Under Assumption 1, the
transform of the conditional employment distribution among those with efficiency q is

L̂(s|q) = e−s(1−α)(q/Q)ε−1L

∞∑
n=0

e−MMn

n!
[∫ ∞

0
L̂

(
αs|zqα

)
F̃

(
zqα

)
dH(z)

]n

= e−s(1−α)(q/Q)ε−1Le−M
∫ ∞

0 [1−L̂(αs|zqα)]F̃(zqα)dH(z)�

where e−s(1−α)(q/Q)ε−1L is the transform of labor used for the household, L̂(αs|zqα) is
the transform of labor used for a potential customer with match-specific productiv-
ity z, and F̃(zqα) is the probability that such a potential customer has no better al-
ternatives, as described in the proof of Proposition 4. Imposing Assumption 2 yields
L̂(s|q) = e−s(1−α)(q/Q)ε−1Le−m

θ qαζ [1−L̂(αs)]. Integrating over entrepreneurs with different ef-
ficiencies, and using the change of variables t = θq−ζ , gives a single fixed point problem
for the transform of the overall distribution of employment:

L̂(s) =
∫ ∞

0
e

−s(1−α) t
− ε−1

ζ

�(1− ε−1
ζ )

L

e− t−α

�(1−α) [1−L̂(αs)]e−t dt
 (14)

The second part of the proof uses a tauberian theorem to relate the slope of the transform
at zero to the slope of the right tail of the employment distribution.48 Q.E.D.

Proposition 5 describes the determinants of the employment distribution, and the proof
shows that its shape depends only on α and ε−1

ζ
. α matters because it determines the

distribution of customers and because it determines how much labor must be used to
produce intermediate inputs for a customer. ε−1

ζ
is a composite of two parameters: ε, the

elasticity of substitution across varieties in consumption and ζ, the shape parameter of the
distribution of efficiencies. In combination, these parameters determine the shape of the
distribution of sales to the household. When ζ is small, there is more dispersion in prices
that the household faces, and when ε is high, the household is more willing to substitute
toward goods with lower prices.

The first result of Proposition 5 describes the determinants of the right tail of the size
distribution. The slope of the right tail is governed by either labor used to make interme-
diate inputs or by labor used to make final consumption. Across entrepreneurs, the upper
tail of labor used to make intermediate inputs for others has a Pareto tail with exponent
1/α, while labor used to make consumption has a Pareto tail of ζ/(ε−1). The proposition

48The particular tauberian theorem used is valid when ρ is not an integer. While I have not been able to
prove it, a reasonable conjecture is that the requirement that ρ is not an integer can be dispensed with.
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says that one of these features will dominate and determine the upper tail of the overall
size distribution.

One way to understand this is to note that the conditional transform implies that among
entrepreneurs with efficiency q, the average employment is (1−α)(q/Q)ε−1L+αm

θ
qαζL.49

The first term is labor used to sell goods to the household; the second, to customers (recall
m
θ
qαζ is the expected number of customers). When α is small, the sales to the household

are more important. When α is larger, sales of intermediates becomes more important,
but also these sales become more concentrated in star suppliers: m

θ
qαζ becomes more

steeply increasing in q. When α > ε−1
ζ

, the increases in average employment across en-
trepreneurs with different efficiencies becomes dominated by the second term, the con-
centration of sales of intermediates.

The second result of Proposition 5 says that even among entrepreneurs with the same
efficiency, the tail of the conditional distribution of employment follows a power law with
the same slope as the overall employment distribution. In other words, there is a lot of
variation in size even among entrepreneurs with the same marginal cost. Among these
entrepreneurs, there is no variation in sales to the household and the distribution of cus-
tomers follows a Poisson distribution, which has a thin tail. What then drives variation in
employment? The granularity of customers: some customers are much larger than oth-
ers. If, for example, an entrepreneur’s customer is a star supplier, the entrepreneur will
require a large mass of labor to make intermediate inputs for that customer. Under As-
sumption 2, the distribution of customer size has a power law tail. The possibility of having
a customer at the upper end of the overall size distribution causes the conditional size dis-
tribution to inherit this power law tail.50

Put differently, suppose α > ε−1
ζ

. The first result of the proposition implies that even
when there is little variation in entrepreneurs’ efficiencies (ζ large), there can be a lot
of variation in size in the cross-section. To use the language of Acemoglu et al. (2012),
this is driven by first-order interconnections: some entrepreneurs have many more cus-
tomers than others. The second result further implies that there is a lot of variation in
size even among entrepreneurs with the same efficiency. While there is little variation
in first-order interconnections across these entrepreneurs, second-order interconnections
drive the variation in size: some of these entrepreneurs’ customers have many customers.

Supplemental Material Appendix D presents some preliminary evidence on the rela-
tionship between intermediate input shares and the right tails of size distributions. Us-
ing data on the size distribution among producers in France and the United States, I
ask whether industries with higher intermediate input shares have size distributions with
thicker tails. Before proceeding, it is worth sounding a few notes of caution. First, if sup-
pliers have nonzero bargaining power, intermediate input shares are not the same as α,
and differences across industries in the dispersion of marginal cost may confound the
comparison. Second, the model abstracts from two features of the reality: producers in
the real world use more than a single input and there is a lot of variation within industries

49The nth moment of a distribution is (−1)n times the nth derivative of the transform.
50Another way to see that the feature that dominates the conditional distribution is the possibility of having

a large customer is to compare the scales of the right tails of the overall and conditional employment distribu-
tions. Rather than lρ, the tail of the conditional size distribution is scaled by (αl)ρ; recall that if a customer uses
l units of labor, its supplier uses αl units of labor in producing the intermediate inputs for that customer. In ad-
dition, the tail of the conditional size distribution is scaled by mqαζ

θ
, the expected number of customers. This is

closely related to the fact that if N independent random variables Xn are distributed so that Pr(Xn > x)∼ x−ρ,
then Pr(

∑N
n=1 Xn > x) ∼Nx−ρ.
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in intermediate input shares; the simple Cobb–Douglas specification is an enormous sim-
plification and it is not obvious which features would carry over to a more general specifi-
cation of technology. Third, it is far from obvious what would serve as the best empirical
analogue of an entrepreneur in the model; a case can be made for firms, products, or
establishments, although each case has its deficiencies. Fourth, a Pareto exponent of 1/α
would be at odds with the Pareto exponent of the empirical firm size distribution, which
is close to 1 (Zipf’s law)51 and perhaps better fits the right tail of the empirical plant size
distribution. Finally, treating each industry as a separate economy may be problematic.

With those caveats firmly in mind, I proceed to the cross-industry comparison. First, I
use estimates from Di Giovanni, Levchenko, and Ranciere (2011) of tail exponents of the
distribution of revenue among firms for each industry in France. In line with the theory,
those industries with higher intermediate input shares tend to have thicker tails. Second,
I estimate tail exponents for the distribution of employment among establishments and
among firms in the United States using data extracts reported by Rossi-Hansberg and
Wright (2007). While the point estimates suggest that industries with higher intermedi-
ate input shares have employment distributions with thicker tails, the estimates are not
precise enough to be distinguished statistically from zero.

4.3. Matching Patterns

In environments with matching, one frequently studied property is whether matches
tend to exhibit positive or negative assortative matching. Proposition 6 shows that an
implication of the model is that whether buyers and suppliers match assortatively depends
on which attribute one studies.

PROPOSITION 6: Under Assumption 2, among techniques that are used in equilibrium:
1. Cov(logqb(φ)� logqs(φ))= 0.
2. Cov(nb(φ)� ns(φ))= 0, where nj is the number of j’s customers.
3. Cov(lb(φ)� ls(φ)) > 0.

PROOF: We first show that the efficiency of a customer is independent of the efficiency
of the supplier. If an entrepreneur with efficiency qs has a downstream technique with
productivity z, the potential buyer selects that technique with probability F̃(zqα

s ) (defined
in Proposition 4). Since the average number of downstream techniques is M , the fraction
of actual customers whose efficiency is no greater than q is

Pr(qb < q|qs� technique is used) =
M

∫ q/qαs

z0

F̃
(
zqα

s

)
dH(z)

M

∫ ∞

z0

F̃
(
zqα

s

)
dH(z)




Imposing Assumption 2 and noting that under this assumption F̃(q) = F(q) = e−θq−ζ ,

Pr(qb < q|qs� technique is used) =

∫ q/qαs

0
e−θ(zqαs )

−ζ
ζz−ζ−1 dz∫ ∞

0
e−θ(zqαs )

−ζ
ζz−ζ−1 dz

= e−θq−ζ
�

51Gabaix (1999) and Luttmer (2007) provided a nice microfoundation for a Pareto exponent close to unity.
See also Gabaix (2009) and the references therein.
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which is independent of qs. The second result follows because qs and qb are uncorrelated
and the probability of being selected as a supplier depends only on efficiency. For the
third result, if the buyer uses lb units of labor, the supplier requires αlb units of labor
to make the intermediate inputs for that supplier. Since the other components of the
supplier’s labor are uncorrelated with lb, the covariance of buyers’ and suppliers’ labor is
Cov(ls� lb)= Cov(αlb� lb)= αVar(l) > 0.52 Q.E.D.

Across all techniques, those that use goods produced by higher-efficiency suppliers tend
to deliver higher efficiency to the potential buyer. The first result of the proposition shows
that, among techniques that are actually used in equilibrium, this correlation is quite dif-
ferent. The key mechanism is selection.

An entrepreneur selecting which of her techniques to use is unlikely to choose one that
is associated with a low-efficiency supplier unless the match-specific productivity is unusu-
ally high. However, she may choose a technique associated with a high-efficiency supplier
even if the match-specific productivity is low; the technique would still be relatively cost-
effective because the intermediate inputs can be acquired at a low cost. Together, these
imply that, among techniques that are used in equilibrium, those associated with lower-
efficiency suppliers tend to have higher match-specific productivity. A consequence is that
among techniques that are used in equilibrium, suppliers’ and buyers’ efficiencies are un-
correlated.53

Second, the proposition shows that suppliers with more customers do not tend to have
buyers with more customers. This is simply a corollary of the first result: the frequency
with which an entrepreneur is selected as a supplier depends only on her efficiency. Since
buyers’ and suppliers’ efficiencies are uncorrelated, there is no correlation in the rate at
which they are selected as suppliers.

The third result indicates, however, that the sizes of buyers and suppliers, as measured
by employment, are positively correlated in equilibrium. While the supplier’s sales to the
household and to other customers are uncorrelated with the size of the buyer, the sup-
plier’s labor used to produce intermediate inputs for the buyer is perfectly correlated with
the buyer’s size. If the buyer is large, the supplier will require a large amount of labor to
satisfy that buyer’s demand for intermediate inputs.

Nevertheless, these results together underscore that care is required when dis-
cussing whether matches exhibit positive assortative matching; two natural measures—
correlation of buyers’ and suppliers’ marginal costs or of sizes—yield different answers.

4.4. The Cost Share of Intermediate Inputs

In most models with roundabout production, the cost share of intermediates is impor-
tant because it corresponds to the input–output multiplier. This section shows that, in the
environment studied here, the cost share is endogenous, and the next section shows that
the cost share may not correspond to the input–output multiplier.

Each entrepreneur makes payments to its supplier and to labor. Entrepreneur j’s cost

share of intermediates is
∑

φ∈Uj
T(φ)∑

φ∈Uj
[wl(φ)+T(φ)] . Similarly, the aggregate cost share of materials

is
∫ 1

0
∑

φ∈Uj
T(φ)dj∫ 1

0
∑

φ∈Uj
[wl(φ)+T(φ)]dj . Recall that a payment to a supplier can be decomposed into vari-

able and fixed components, T(φ) = λs(φ)x(φ) + τ(φ), and that pairwise stability implies

52Equation (14) implies that the variance of employment is finite only if α and ε−1
ζ

are small enough.
53The fact that the covariance is exactly zero depends on Assumption 2.
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that the cost of labor used with a technique is proportional to the variable component of
the payments to the supplier, λs(φ)x(φ) = α

1−α
wl(φ). The aggregate cost share therefore

equals ∫ 1

0

∑
φ∈Uj

[
α

1 − α
wl(φ)+ τ(φ)

]
dj

∫ 1

0

∑
φ∈Uj

[
wl(φ)+ α

1 − α
wl(φ)+ τ(φ)

]
dj




Rearranging and using the labor market clearing condition
∫ 1

0

∑
φ∈Uj

l(φ)dj =L gives

αwL+ (1 − α)

∫ 1

0

∑
φ∈Uj

τ(φ)dj

wL+ (1 − α)

∫ 1

0

∑
φ∈Uj

τ(φ)dj




One immediate result is that the intermediate input cost share is weakly larger than α, be-
cause in any countably-stable equilibrium, τ(φ) is almost surely weakly positive.54 Propo-
sition 7 characterizes the aggregate intermediate input cost share under Assumption 2 for
the equilibrium in which suppliers receive a fraction β of surplus of each technique.

PROPOSITION 7: Under Assumption 2, in a countably-stable equilibrium in which τ(φ)=
βS(φ), the aggregate cost share of intermediates is

α+β/ζ

1 +β/ζ

 (15)

Average revenue among those with efficiency q is [ ε
ε−1(q/Q)ε−1 + α+β/ζ

1−α
m
θ
qαζ]wL.

PROOF SKETCH: Since techniques can be enumerated by either their buyers or sup-
pliers,

∫ 1
0

∑
φ∈Uj

τ(φ)dj = ∫ 1
0

∑
φ∈Dj

τ(φ)dj = β
∫ 1

0

∑
φ∈Dj

S(φ)dj. The rest of the proof

shows that
∫ 1

0

∑
φ∈Dj

S(φ)dj = 1
1−α

1
ζ
wL.

Define rj ≡ ∑
φ∈Dj

S(φ) to be the total surplus of all of j’s downstream techniques.
Define vj ≡ π0

j + rj to be the surplus of entrepreneur j; if j were unable to produce, vj
would be the total change in profit among j and all entrepreneurs downstream from j.
Let V (q) and R(q) be the averages of vj and rj , respectively, among entrepreneurs with
efficiency q. Among techniques downstream from such entrepreneurs with match-specific
productivity z and for which the buyer’s best alternative delivers efficiency q̃, the average
surplus is V (max{zqα� q̃}) − V (q̃). R(q) is found by averaging over realizations of z, q̃,
and the number of downstream techniques:

R(q) =M

∫ ∞

z0

∫ ∞

0

[
V

(
max

{
zqα� q̃

}) − V (q̃)
]
dF̃(q̃)dH(z)�

54While it is assumed that the labor market is competitive, collective bargaining could drive a wedge between
the wage and the marginal cost of labor, pushing down the cost share of intermediate inputs.
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where, as in the proof of Proposition 4, F̃(q̃) is the probability that the buyer has no
alternative technique that delivers efficiency better than q̃. Imposing Assumption 2 (which
also implies F̃(q̃) → F(q̃)) and making the change of variables u= zqα gives

R(q) =m

∫ ∞

0

∫ ∞

0

[
V

(
max

{
zqα� q̃

}) − V (q̃)
]
dF(q̃)ζz−ζ−1 dz = m

θ
qαζρ�

where ρ ≡ θ
∫ ∞

0

∫ ∞
0 [V (max{u� q̃}) − V (q̃)]dF(q̃)ζu−ζ−1 du. V can thus be expressed as

V (q) = 1
ε−1(q/Q)ε−1wL+ m

θ
qαζρ. Substituting this into the definition of ρ and solving for

ρ yields ρ= 1
1−α

1
ζ
wL. Finally, we have that

∫ 1
0

∑
φ∈Dj

S(φ)dj = ∫ ∞
0 R(q)dF(q) = ρ.

Revenue of entrepreneur j is π0
j +βrj + wlj

1−α
. Average revenue of those with efficiency

q is thus 1
ε−1(q/Q)ε−1wL+βR(q)+

∫ ∞
0 l dL(l|q)

1−α
. Using the expression for R(q) from above

and for
∫ ∞

0 l dL(l|q) from Section 4.2 gives the result. Q.E.D.

If buyers have all of the bargaining power (β = 0), then the cost share is simply α. In
that case, the cost per unit of the intermediate input equals the buyer’s (and supplier’s)
shadow value. If suppliers have more bargaining power, the cost share of intermediate
inputs rises. However, the payment to a supplier is limited by the buyer’s next best option.
Under Assumption 2, 1

ζ
is a measure of the variation in match-specific productivities.

When ζ is smaller, there is typically a larger distance between the efficiency delivered by
each buyer’s best and second-best techniques. This raises the surplus to be split between
the buyer and the supplier, and increases the payment for intermediate inputs.

4.5. Aggregate Output

Aggregate output in the economy is C = QL. With the functional forms, aggregate
productivity is Q = (

∫ ∞
0 qε−1 dF(q))

1
ε−1 = θ1/ζ�(1 − ε−1

ζ
)

1
ε−1 . Combining this with the ex-

pression for θ from (13) gives an expression for the household’s consumption:

C =
[
�

(
1 − ε− 1

ζ

) ζ
ε−1

�(1 − α)
1

1−αm
1

1−α

] 1
ζ

L
 (16)

There are several immediate implications. First, as in Kortum (1997), aggregate output in-
creases with more techniques, m.55 In an economy with more techniques, entrepreneurs
tend to have larger sets of supply chains to choose from and, hence, are more likely to
have found an efficient one. When ζ is small, the distribution of productivity draws has
a thicker upper tail. The exponent 1

ζ
scales (exponentially) the productivity of any tech-

nique, and consequently each entrepreneur’s efficiency. The term �(1 − ε−1
ζ
)

ζ
ε−1 reflects

the household’s ability to consume more of less expensive goods. ε, the elasticity of substi-
tution across varieties, measures the household’s willingness to substitute toward lower-
cost goods, while ζ indicates how much cheaper these lower-cost goods are.

Second, the exponent 1
1−α

that appears in several places is an input–output multiplier
that shows up in any model with roundabout production. α determines the extent to which

55In the special case in which α = 0, input–output relationships play no role and the expression for aggregate
output is the same as Kortum (1997).
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lower input prices feed back into lower cost of production. A notable difference between
this and the standard input–output multiplier is that, in this context, α is not necessarily
the same as the cost share of intermediate inputs; if suppliers have some bargaining power
(β> 0), then α is smaller than the cost share.

A separate, more interesting, role is that α determines the composition of the en-
trepreneurs supplying intermediate inputs. Recall from Section 4.1 that α determines the
frequency with which the lower-cost producers are selected as suppliers. In other words,
when α is closer to 1, the lowest-cost producers are more likely to become star suppli-
ers and be more relevant for aggregate production. At a more fundamental level, the
supply chains used to produce each good are more likely to be routed through the higher-
productivity techniques. Aggregate output is higher because these higher-efficiency tech-
niques are used more intensively. Mathematically, this shows up in the term �(1 − α).56

In sum, when α is high, each supplier is able to pass through cost savings to its customers
at a higher rate and supply chains used in equilibrium are more likely to be routed through
higher-efficiency techniques.

4.6. Identifying Model Parameters

In this section, I suggest some strategies that might be useful in identifying the param-
eters of the model. While I do not pursue these strategies here, I discuss what kind of
variation might shed light on the structural parameters in this class of models.

As shown by Proposition 7, one may not be able to identify α from cost share of in-
termediate inputs. Rather, α corresponds to the input–output multiplier. In principle, α
could be identified by measuring this multiplier directly. Suppose, for simplicity, that a
policy change introduced an iceberg cost of shipping goods from one producer to another
or to the household, so that δ > 1 units of a good must be shipped for one unit to arrive.57

This is isomorphic to dividing all match-specific productivities by a factor of δ, so that the
efficiency of every supply chain is divided by a factor of δ

1
1−α . α could be identified from

studying how aggregate productivity varied with changes in δ: d lnQ
d lnδ = − 1

1−α
.

To identify ζ, one could use the fact that ζ + 1 is the elasticity of substitution across dif-
ferent groups of entrepreneurs in aggregate spending on intermediate inputs. This strat-
egy is borrowed from the trade literature; in Eaton and Kortum (2002), the shape param-
eter of the Frechet distribution describing producers’ productivities is also the trade elas-
ticity.58 The following example illustrates this idea with a slight departure from the base-
line framework. Suppose that entrepreneurs could be randomly divided into K groups
J1� 
 
 
 � JK of sizes μ1� 
 
 
 �μK , respectively. Suppose also that the only alteration to the
model is that sales of those in group k are subject to a proportional sales tax at rate
δk − 1. Buyers would, of course, substitute across suppliers in response to the taxes. As
shown in Supplemental Material Appendix C.5, the ratio of total intermediate input pur-
chases from suppliers in group k to intermediate input purchases from suppliers in group

56Note that �(x) is decreasing on (0�1), with limx↘0 �(x) = ∞ and �(1) = 1. To get a sense of the magnitude,
a change in α from 0
55 to 0
65 increases the standard multiplier 1

1−α
from 2
2 to 2
9, increases �(1 − α) by a

factor of 1
3, and increases �(1 − α)
1

1−α by a factor of 3
2.
57This is like a proportional sales tax collected in goods where the proceeds are thrown into the ocean.
58If one could measure marginal costs directly, one could estimate ζ by studying the dispersion in marginal

cost across suppliers. However, in this environment, measuring marginal costs could be quite difficult, as units
might not be comparable across producers and marginal costs may differ from average costs because of the
transfers of surplus.
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k′ would be
∫
j∈Jk

∑
φ∈Dj

T(φ)∫
j∈Jk′

∑
φ∈Dj

T(φ)
= μkδ

−ζ
k

μk′δ−ζ
k′

. Thus changes in tax rates could be used to identify ζ:

d log
μkδ

−ζ
k

μk′ δ−ζ
k′

d logδk/δk′ = −ζ.59

In a similar way, ε could be identified by studying how the household substitutes across
goods as relative prices change. Finally, the bargaining power parameter β could be iden-
tified using the aggregate cost share of intermediate inputs along with the estimates of α
and ζ.

5. CONCLUSION

This paper developed a theory of the formation of an economy’s input–output architec-
ture and characterized the implications for the size distribution, organization of produc-
tion, and productivity. When intermediate goods are more important in production, activ-
ity becomes more concentrated in star suppliers, even when differences across producers
in marginal cost are arbitrarily small. This raises aggregate productivity as supply chains
are more likely to be routed through higher-productivity techniques, and also increases
the market concentration in sales of intermediate goods. While research documenting
patterns of micro linkages is at an early stage, the model provides both testable implica-
tions and an organizing framework to guide empirical work as new data sets emerge.

That being said, the model could be enriched in a number of ways so that it can be
mapped more cleanly to data. In the model, techniques use a single input, while most
real-world producers use multiple inputs. Similarly, α is assumed to be the same for all
techniques, but there is enormous variation in cost shares of materials in microdata. Some
entrepreneurs may be more capable than others, so that there is a dimension of produc-
tivity that is not tied to particular inputs. Finally, as with many studies with heteroge-
neous producers, it is far from obvious whether the appropriate empirical analog of an
entrepreneur is a firm, an establishment, a product, or something else altogether. Further
research could help address these gaps.

A key channel in the model is that the network structure—who buys inputs from
whom—matters for aggregate productivity. This channel may be useful in assessing the
consequences of the marked changes in sourcing during macroeconomic crises or sup-
ply chain disruptions.60 The mechanism may also be important when studying distor-
tions that may cause producers to use the wrong suppliers, leading them to use lower-
productivity techniques or higher-cost inputs.61 Such distortions may include contracting
frictions, state mandates to purchase inputs from particular suppliers, or barriers such as
the Berlin Wall. Appropriately modified, the model would provide a natural link between
such distortions and aggregate productivity.

59The example is relatively simple, and in practice the various groups might represent producers in different
industries or in different locations. Each of those wrinkles would suggest modifying the model in the appro-
priate way to fit the application: entrepreneurs in one location might be more likely to attain techniques that
use suppliers in nearby locations than distant ones, or entrepreneurs in one industry, for example, tires, might
tend to use suppliers in particular other industries, for example, rubber. Further, if entrepreneurs were in
different locations, one might dispense with the assumption of a common labor market and a single represen-
tative household. Nevertheless, these wrinkles are easily accommodated, and while the exact expression used
to identify ζ might vary with the application, the same general strategy should carry over.

60Gopinath and Neiman (2014) and Lu, Mariscal, and Mejıa (2017) documented changes during crises,
while Carvalho, Nirei, Saito, and Tahbaz-Salehi (2016) and Barrot and Sauvagnat (2016) studied disruptions
following natural disasters.

61Jones (2011, 2013) argued that distortions may cause producers to use the wrong input quantities.
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