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Abstract

We study theoretically and empirically how firm-to-firm sales relationships shape firm dynamics and

productivity. We first present a parsimonious model of firm dynamics where dynamics arise from the

arrival of new potential matches between firms, acting as supply shocks from the perspective of buyers,

and as demand shock from the perspective of suppliers. Buyers switch to new suppliers when it is

optimal to do so. The model matches the empirical regularities on firm volatility and exit probabilities

declining with size, endogenous fat tails in firm growth rates, and some firms with persistently (but not

permanently) high growth rates (“gazelles”). We apply the model to a setting in which contracting fric-

tions between firms give rise to long-term relationships. These arrangements improve incentives within

the relationship, but firms switch to new suppliers less frequently. This reduces firm dynamism, in the

sense that firm sales are less volatile, there is less mean reversion, exit rates are lower, and the right tail

of the firm size distribution is thinner. We corroborate these predictions with production data on Indian

manufacturing plants and transaction-level data from Pakistan, using variation across regions in court

congestion as a proxy for weak formal enforcement and variation across industries in whether the output

requires customization. Using a quantitative implementation of our model we show that the dynamic

cost of long-term contracts is significant, with the increased court congestion between the state with

the fastest courts and the state with the slowest courts reducing aggregate productivity by roughly 15%.
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1 Introduction

There are systematic differences in firm dynamics across countries at different stages of development.

In developing countries small firms, even when productive, remain small while large incumbents

tend to stay large, and firms rarely exit the market (Hsieh and Klenow, 2014). One mechanism

that may contribute to this phenomenon is that firms choose to source using long-term relational

contracts to overcome hold-up problems associated with poor contract enforcement by formal judi-

cial institutions. While these relational contracts have the virtue of improving performance within

relationships, they may inhibit firms from switching to cheaper suppliers (Johnson, McMillan and

Woodruff, 2002, Hémous and Olsen, 2018). If firms are reluctant to switch suppliers, young, pro-

ductive firms may not grow as fast as they otherwise would because potential customers tend to

stay in their current relationships.

In this paper we study theoretically and empirically how the formation and destruction of firm-

to-firm relationships shape firm dynamics and aggregate productivity. We construct a quantitative

model in which firm dynamics are driven by a process of matching between potential buyers and

suppliers — acting as supply shocks from the perspective of buyers, and as demand shocks from

the perspective of suppliers — and which determines the equilibrium distribution of firm sizes and

productivities. To validate the model’s predictions and to quantify the importance of contracting

frictions, we apply the model to the contexts of India and Pakistan, two economies that are char-

acterized by enforcement frictions that, as we show, give rise to long-term relationships and to a

low degree of dynamism.

In Section 2 we construct a model of firm dynamics that features relationships between buyers

and suppliers, which we argue are key for understanding the patterns of firm dynamics that are

present in the data. The model features a continuum of firms that each draw suppliers for their

inputs and need to decide when to switch to new suppliers. In general, characterizing this decision

of when to switch suppliers can be complicated because of the enormously high dimension of each

firm’s state. Under a set of assumptions about the matching and productivity process, each firm’s

cost of production becomes a random walk, which makes the decision tractable because only the

current cost of the incumbent and alternative suppliers need to be compared. Demand for firms’

output arises endogenously from firms being chosen as suppliers.

A firm’s size depends on how many customers it has as well as the size of those customers,

which depends on how many customers they have, etc. A firm with a low cost will get selected

more frequently by potential buyers that it encounters. Firms grow and shink when they (or their

customers) gain or lose customers. A firm exits when it loses its last customer. In Section 3, we

show the model is consistent with a number of empirical regularities about firm dynamics beyond

the standard ones that motivated canonical models of firms dynamics such as Hopenhayn (1992).

Firm volatility declines with size, but more slowly than one would expect if a firm were simply

the sum of independent components of similar size. The distribution of firm growth rates has fat

right and left tails. Large firms occasionally exit, but the exit rate declines smoothly with size and
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approaches zero as firm size goes to infinity. The model features gazelles—firms have persistently

(but not permanently) high growth rates. The model is parsimonious in the sense that there is just

a single shock that drives all of the dynamics. Despite this simplicity, the model is consistent with

these empirical regularities because that one shock plays a number of different roles, depending

on a firm’s relationship to the location of the shock; customers naturally vary in size because

some of those customers have accumulated many customers. Changes in size come from acquiring

or losing customers, from customers growing or shrinking (because they gain and lose customers,

etc.). Changes in firm’s cost, because it finds a new better supplier (or its supplier finds a new,

better supplier), also affect a firm’s sales and that of its customers.

Section 4 introduces contracting frictions and relational contracts and describes the model’s

predictions for firm dynamics. With more severe contracting frictions, firms switch suppliers less

frequently. This reduces firm volatility, reduces the rate of mean reversion, reduces the exit rate,

and reduces the thickness of the right tail of the firm size distribution.

Section 5 uses production data on Indian manufacturing plants and transactions data on Pak-

istani firms to test these predictions. We use court congestion as a proxy for weak formal contract

enforcement. We show that more congested courts have a larger impact on firm dynamics in in-

dustries that produce goods that are relationship-specific (Rauch, 1999). Our approach is to use

variation across locations in court congestion and study the differential impact on firms that pro-

duce relationship-specific goods vs. firms that produce standardized goods. Thus we control for any

local factors that affect all firms, or industry characteristics that would be present in all locations.

Our baseline specifications address endogeneity using a variety of fixed affects, and we also employ

an instrument for court congestion in the context of India.

Using the transactions data, we find that more severe contraction frictions increase the duration

of buyer-supplier relationships more when the the supplier’s output is relationship-specific rather

than standardized. In line with the model’s predictions, we find that more severe contracting

frictions reduce firm volatility, reduce the rate of mean reversion, reduce the exit rate, and reduce

the thickness of the right tail of the firm size distribution.

Finally, Section 6 studies the impact of slow firm dynamics induced by weak contract enforce-

ment on aggregate output. The model predicts that contracting frictions weaken the relationship

between firm cost and firm size, as firms become less likely to switch to good suppliers. We find

that in the state with the most congested court, output is 15% lower than it would be if its courts

congestion were reduced to the level of the state with the least congested courts.

1.1 Related Literature

Our model is one in which firm dynamics are driven by the formation and destruction of firm-to-

firm linkages. Any new link is a new customer of the supplier and a new supplier for the customer.

A number of of papers have documented the importance of customer accumulation for firm growth

(Luttmer, 2011; Gourio and Rudanko, 2014; Afrouzi, Drenik and Kim, 2020; Argente et al., 2021;

Einav et al., 2021). These are consistent with Foster, Haltiwanger and Syverson (2016), who
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find that firms grow by accumulating demand over time. Here, demand is simply customers that

choose to buy a firm’s good. Separately, a number of papers have documented using customs data

that switching of suppliers is relatively frequent (Gopinath and Neiman, 2014, Lu, Mariscal and

Mej́ıa, 2024, Damijan, Konings and Polanec, 2014) and that it is slower for relation-specific inputs

(Monarch, 2022). Further, Baqaee et al. (2023) show that switching suppliers is an important

channel for changes in a firm’s cost. Our paper brings these perspectives together as part of a

single unified phenomenon.

Most of the literature on firm-to-firm trade that has focused on the patterns of firm heterogeneity

have done so in a static environment: Oberfield (2018), Bernard, Moxnes and Ulltveit-Moe (2018),

Eaton, Kortum and Kramarz (2022), Bernard et al. (2022). We introduce dynamics to be able to

speak to long-term relationships. Furthermore, our model generates predictions about the impact

of contracting frictions on outcomes such as variance of growth rates and exits for which dynamics

are essential. The models by Chaney (2014) and Aekka and Khanna (2024) feature firm-to-firm

trade, life-cycle dynamics, and a size distribution. In those models, firms have a continuum of

customers and suppliers, so size evolves deterministically.

Most models with firm-to-firm trade and dynamics have focused on understanding the pass

through of shocks (Lim, 2018, Huneeus, 2018) or recovery from shocks (Miyauchi, 2018) rather

than dynamic moments of firm characteristics. Martin, Mejean and Parenti (2023) and Fontaine,

Martin and Mejean (2023) incorporate frictions to adjustment of firm-to-firm relationships to study

the the impact of trade shocks.

Our paper also speaks to the literature that attempts to explain low aggregate productivity

in developing countries. A number of papers study the impact of court congestion on contract

enforcement and firm performance, in India (Boehm and Oberfield, 2020, Amirapu, 2021, Chemin,

2012) and elsewhere. The literature that attempts a quantification of those frictions does so from a

static perspective. A number of papers discuss firm dynamics in these settings: Hsieh and Klenow

(2014) document slow firm dynamics in India. Akcigit, Alp and Peters (2021) posit that this

is caused by delegation frictions that make it costly for some firms to grow. In our model, the

relational contracts slows the reallocation of customers across firms, similar to how firing costs

slow the reallocation of workers across firms in Hopenhayn and Rogerson (1993). The long-term

relationships resulting from contracting frictions affect both firm’s costs on the supply side, but

also act to reduce demand and growth for young productive firms. Finally, our paper builds

on the microeconomic literature that emphasizes the role of relational contracts in developing-

country contexts (Macchiavello and Morjaria, 2015, Macchiavello and Morjaria, 2021). We study

the importance of these types of arrangements in a quantitative model of firm dynamics.

Kwon, Ma and Zimmermann (2023) and Chen (2023) have documented that the right tail of

the firm size distribution has gotten thicker in the US over time, and Chen (2023) has shown that

the tail is thicker in countries that are more developed. In our model, more severe contracting

frictions which result in longer relationships makes the right tail thinner.
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2 Simple Model

The economy consists of a representative household, firms that produce (or simply “firms”), and

retailers. Firms produce goods using labor and intermediate inputs, and sell their output to other

firms and to retailers. In this simple model, retailers produce goods in the same way as firms but

only sell goods to households. Retailers compete monopolistically in selling goods to the household.

The household supplies labor to firms and purchases goods from retailers.

We first describe an environment in which the economy consists of a single industry of firms.

In Section 3.1 we extend the model to allow for many industries.

2.1 Households

There is a representative household with a labor endowment that grows at rate γ, so that the

measure of labor available at t is Lt = L0e
γt. The household earns wages and receives dividends

from a representative mutual fund that owns the firms.

The household has Dixit-Stiglitz utility across the output of all the retailers. Thus if Rt is the

set of retailers at time t and the household consumes yjt from retailer j, the household’s period

utility is u(Yt), where the aggregator Yt is defined as

Yt ≡
(∫

j∈Rt
y
ε−1
ε

jt

) ε
ε−1

.

Labor can be used for production or to create new entrants. If a fraction ηt of labor is used

to create entrants, a flow ηtLtχ of new entrants are created. When an entrant is created, there is

a fixed probability ζ the entrant becomes a retailer, so that with probability 1 − ζ it becomes a

producing firm.1

2.2 Production

A firm is a variety. To produce, a firm uses a technique. A technique is a triple: a buyer, b, a

supplier, s, and a match-specific productivity, z. A technique is a production function for the buyer

yb = A(zbsxs)
αl1−α, A ≡ α−α(1− α)−(1−α)

where yb is output of the buyer’s good, xs is units of the supplier’s good used as an intermediate

input, and l is labor.

At a point in time, a firm has access to a single technique, but is constantly drawing new tech-

niques, comprised of a new potential supplier along with a match-specific productivity associated

with using that supplier. When it encounters a new potential supplier, it can either switch to the

1The model would remain tractable if we assumed, instead, that entry could be directed toward retailing or
producing. We maintain here that entry is undirected so that, in our counterfactuals, we can avoid taking a stance on
how the arrival of new potential matches changes when the relative proportion of prospective buyers and prospective
suppliers changes.
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new one or remain with its old one. Similarly, each new entrant draws a set of techniques that it

might use. The set of suppliers is randomly drawn from all existing producing firms, and for each

of those suppliers it draws a match specific productivity. As we discuss below, in equilibrium the

buyer will select the supplier that delivers the lowest effective cost.

2.3 Static Equilibrium

We begin by characterizing a static equilibrium, and then proceed to characterize a balanced growth

path.

We focus on a static equilibrium concept in which there is monopolistic competition among

retailers in selling to the household and stable contracting arrangements among firms and retailers.

A contract between a buyer-supplier pair b, s is a quantity of the supplier’s good xbs and a

transfer payment from the buyer to the supplier, Tbs. A contracting arrangement consists of a

contract between each buyer-supplier pair. Given a contracting arrangement, a wage, w, and

household demand for each retailer’s good, each producing firm chooses a quantity of labor, and

each retailer chooses a quantity of labor and a price for its variety to maximize profit.

Each firm’s static profit is its revenue minus its cost. For a producing firm j that uses supplier

s, and has a set of buyers Bj , static profit is

πj =
∑
b∈Bj

Tbj − wlj − Tjs .

For retailer j that sets price pj and faces household demand yj = Y (pj/P )
−ε, static profit is

πj = pjyj − wlj − Tjs .

A contracting arrangement is stable with respect to a coalition of firms if the firms in the

coalition do not wish to change the terms of the contracts among them and do not wish to drop

contracts with others that are not in the coalition. A contracting arrangement is pairwise stable if

it is stable with respect to deviations by a single firm or deviations by a coalition consisting of a

buyer-supplier pair. A contracting arrangement is countably stable if it is stable with respect to any

countable coalition of firms. A countably stable contracting arrangement is stable with respect to

deviations by a coalition consisting of an entire supply chain, but not with respect to deviations by

a positive measure of firms (which could undermine the monopolistic competition among retailers).

Proposition 1 summarizes features of any contracting arrangement that is pairwise stable. An

object that will be useful in characterizing the equilibrium is each firm’s marginal cost. Specifically,

given a contracting arrangement, firm j’s total cost of producing output y is Cj(y) ≡ minlj wlj+Tjs

subject to A(zjsxjs)
αl1−αj ≥ y. We define firm j’s marginal cost as cj ≡ C′

j(yj), where yj is output

induced by the contracting arrangement.2 Another object that will be useful in characterizing

2If j is a producer firm then j’s output is yj =
∑
b∈Bj

xbj and is directly determined by the contracting arrangement.

If j is a retailer, its output is the quantity demanded by the household, yj = Y (pj/P )−ε, which depends on the price
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equilibria will be the efficiency of the supply chain to produce an input. Suppose a buyer b uses

supplier s1, and that supplier s1 uses supplier s2, etc. These buyer-supplier pairs form a supply

chain. We define the supply chain’s productivity to be

qb = zb,s1z
α
s1,s2z

α2

s2,s3 . . .

Proposition 1 In any pairwise stable contracting arrangement,

1. For any firm j, wlj = (1− α)cjyj

2. For any buyer-supplier pair, csxbs = αcbyb

3. For any buyer-supplier pair, the buyer’s marginal cost is

cb =

(
cs
zbs

)α
w1−α

4. For any retailer j, pj =
ε
ε−1cj

5. For any firm j, πj ≥ 0.

6. For any firm j, cj ≥ wq−αj .

7. Aggregate output is

Y = (1− η)L

∫
j∈R

(cj
w

)1−ε
dj

The first three results show that in any pairwise stable contracting arrangement, supply chains

are efficient in that there is no double marginalization. The fourth result shows that the retailers set

the usual markup over marginal cost when setting a price for the household. Fifth, no firm cannot

earn negative profit; a firm that earned negative profit would deviate by dropping all contracts.

Sixth, there is a lower bound on each firm’s marginal cost that is determined by the efficiency of the

supply chain to produce its input; this is an implication of pairwise stability and feasibility. The

seventh result describes aggregate output in the economy. Labor used for production is (1 − η)L,

so that aggregate productivity is just the usual Dixit-Stiglitz aggregator of cost across the set of

retailers, R. The resulting expression for aggregate output reflects the result that there is no double

marginalization in supply chains.

We study countably stable contracting arrangements. These arrangements are stable with

respect to deviations by coalitions of countable sets of firms. This means, in particular, that count-

ably stable contracting arrangements are a subset of pairwise stable arrangements. Proposition 2

provides a characterization of countably stable equilibrium.

Proposition 2 Given a wage and household spending, a contracting arrangement is countably

stable if and only if the induced choices satisfy (i) πj ≥ 0 for all firms j,(ii) Tbs ≥ csxbs for all

buyer suppler pairs, and (iii) cj = wq−αj for each firm j.

j chooses, pj .
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There are many countably stable equilibria. Each equilibrium features the same allocation.

However, equilibria differ in how surplus is split across firms. In each retailer’s supply chain, the

retailer gets profit from charging a markup to the household. This profit is divided across the supply

chain according to the transfers in the contracting arrangement. Countable stability guarantees

that each participant in the supply chain earns a non-negative share of the surplus of the supply

chain, but imposes no more restrictions.

Many notions of equilibrium determine split of surplus using some form of bargaining weights.

We assume here that the surplus received by each supplier is fraction α of the surplus received by

the buyer.3 This is equivalent to assuming that each firm’s share of the supply chain’s surplus is

proportional to its share of the supply chain’s total expenditure on labor. With these bargaining

weights, if a firm spends wlj on labor, its total revenue is ε
ε−1

1
1−αwlj and its payment to its supplier

is ε
ε−1

α
1−αwlj , so its static profit is 1

ε−1wlj .
4,5

2.4 Dynamics

For each firm, new techniques arrive randomly according to a Poisson process. The identity of the

supplier is randomly drawn from all existing firms. The match-specific productivity is random.

We assume that when a firm gets a new potential supplier, there is a spillover from its existing

match. In particular, we follow Buera and Oberfield (2020) in assuming that the new match specific

productivity is the product of an original component, b, and a component that is inspired by the

firm’s existing supply chain. So if firm j’s initial supply chain has productivity q and a new supplier

arrives with a technique with original component b, the match-specific productivity with the new

supplier would be z = qb.

We assume, that the arrival rate of new techniques with original component greater than b is

κb−β. As a result, the arrival rate of a new supplier that offers a reduction in effective cost larger

than x is

ϕx−β

where ϕ ≡ κ 1
|Jt|
∫
j∈Jt

(
cjt
wt

)−β
dj, and |Jt| is the set of producer firms in the cross section at t.

There is no recall. Once a buyer switches to a new supplier, there is no option to switch back

to the supplier it left.

3Specifically, if the j’s total revenue, net of its unit cost, is
∑
j∈Bj

(Tbj − cjxbj), then j’s transfer to its supplier s

satisfies Tjs − csxjs = α
∑
j∈Bj

(Tbj − cjxbj).
4One attractive property of these bargaining weights is that each firm’s expenditure on labor is proportional to

its revenue, so that there is a single notion of a firm’s “size.” We discuss alternative bargaining weights that are
consistent with equilibrium in Appendix D.1.4.

5Each firm’s ratio of revenue to cost is ε
ε−(1−α) . This is smaller than the usual expression for a markup ε

ε−1

because the contracts specify both a price and quantity instead of just a price. This allows each buyer-supplier pair
to split surplus without distorting quantities, avoiding double marginalization. The buyer’s shadow value of the input
equals the supplier’s marginal cost even though the payment per unit is larger than the suppliers marginal cost.
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2.4.1 Discussion of Model Assumption

The mechanics of the model are governed by the random arrival of techniques and one key economic

decision: when a new potential supplier arrives, should the firm switch or remain with its current

supplier? In principle this is a complicated decision because a firm’s state is extraordinarily large.

The main impediment to a simple decision rule is mean reversion in cost. To understand why

mean reversion can cause problems, consider the following example. A firm b is choosing between

two potential suppliers, its new supplier s1 and a new potential supplier s2, that respectively offer

the buyer effective costs c1/zbs1 and c2/zbs2 . With mean reversion in cost, it might be the case

that the supplier who offers a lower effective cost now is likely to offer a higher effective cost in the

future. A buyer thinking about which of those suppliers to choose will have to weigh its current

demand relative to future demand. If the buyer has a low effective cost but few customers, so

that its future demand is expected to be higher than current demand, it may value a low future

effective cost more than a low current effective cost. Or if it has a high current cost so that it does

not expect to gain many new customers, but many current customers, it may place a high value

on current effective cost cost. And the decision gets even more complicated when one considers

whether a firm expects its customers’ customers to grow, etc.

The critical features that keep the decision simple and tractable are modeling assumptions

that ensure that each firm’s marginal cost follows a random walk. In that case, a firm should

simply choose the supplier that currently offers a lower effective cost, as the distribution of that

supplier’s effective cost at any point in the future would first-order-stochastically dominate that of

the potential supplier that currently offers a higher effective cost. Thus there is never any trade-

off between current and future effective cost. When comparing two potential suppliers, current

efficiency delivered is a sufficient statistic for stochastic dominance of that supplier in the future.

Lack of mean reversion in supplier cost is in line with the empirical findings of Baqaee et al.

(2023). They study how a firm’s marginal cost changes when, for reasons unrelated to the firm’s

own productivity, it stops using one supplier and/or starts using a new supplier. They find that

the cumulative change in the firm’s marginal cost one year after the switch is very similar to the

cumulative change two and three years after the switch, consistent with no mean reversion in

supplier cost.

Many of the modeling choices have been made with an eye toward ensuring that firm’s cost

follow a random walk. The spillovers from current matches to the match productivity of a new

match ensure that the arrival rate of new suppliers that deliver a given cost reduction is independent

of current cost. And if each supplier’s cost follows a random walk, then the distribution of cost

reductions further upstream are independent of current costs. The assumption that there is no

recall is also important. If a supplier could recall one of its suppliers, than a buyer would want to

know whether a supplier had a close alternative to its suppliers when choosing whether to switch.

Note also that firms in our model never die, even though they might lose their last customer,

in which case they remain dormant and do not produce until they get selected as a supplier again.

While dormant they still receive draws of new potential suppliers and buyers. We use the term
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“exit” to refer to this transition from positive to zero production, i.e., a firm losing its last customer.

We will associate this with firm exit in the data. In this way, exit does not introduce any mean

reversion in cost.

2.5 A Balanced Growth Path

In this section we construct a balanced growth path in which the share of labor used for entry is

constant over time, the mass of firms grows at the rate of population growth, and the distribution of

cost among firms in the cross section remains constant. Such an equilibrium will feature a constant

interest rate and constant growth of per-capita consumption.

Suppose that a constant fraction η of labor is used to create firms each instant, and that the

distribution of cost among firms in the cross section is constant over time.

To simplify the exposition, we normalize the wage to 1. Then let F (c) be the fraction of firms

in the cross section with cost weakly less than c. Similarly, let Fτ (c) be the distribution function

of cost among firms of age τ . In particular, F0(c) is the distribution function among entrants. The

flow of new entrants is χηLt and Lt grows at rate γ, the fraction of firms at t that are age τ is

γe−γτ . Therefore the cross sectional distribution of cost satisfies

F (c) =

∫ ∞

0
γe−γτFτ (c)dτ .

For each firm, the arrival rate of techniques that offer cost reductions is constant over time,

ϕ = κ
∫
c−βdF (c).

2.5.1 Entrants

A new entrant gets many initial draws of techniques and chooses the one that delivers the lowest

cost. For each technique, the supplier and the match-specific productivity is random. The number

of draws of techniques with match-specific component larger than z follows a Poisson distribution

with mean κ0z
−β. For a technique with match-specific productivity z, the probability that the

supplier’s cost cs is low enough that the buyer’s cost
(
cs
z

)α
w1−α is less than c—that is, the prob-

ability that cs ≤ zc1/α—is simply F
(
zc1/α

)
. Integrating across possible draws of match-specific

productivities, the number of techniques that deliver to the buyer a cost less than c is Poisson with

mean κ0
∫∞
0 F

(
zc1/α

)
βz−β−1dz. 1− F0(c) is the probability of no such draws, or

1− F0(c) = exp

{
−κ0

∫ ∞

0
F
(
zc1/α

)
βz−β−1dz

}
using the change of variables u = zc1/α and integrating by parts yields

1− F0(c) = exp

{
−κ0cβ/α

∫ ∞

0
u−βdF (u)

}
(1)
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2.5.2 Changes in Cost

A firm’s production cost falls if it finds a new better supplier, if its supplier finds a new better

supplier, or if any supplier in the firm’s supply chain finds a new better supplier. Since supply

chains are infinite, there are an infinite number of events that can reduce the firm’s cost.

A firm’s cost thus follows a stochastic process called a jump process with infinite activity. In

any strictly positive interval of time, almost surely an infinite number of suppliers in the firm’s

supply chain will find new suppliers, reducing the firm’s cost. Nevertheless, most of these events

are so far upstream that they have only a small impact on the firm’s cost, as the new suppliers

account for such a small fraction of the supply chain’s value added. That being said, when the firm

itself finds a new supplier, or if a supplier not too far upstream finds a new supplier, this can have

a big effect on the firm’s cost. Altogether, even though there are an infinite number of potential

events, the cumulative impact of these events is a well behaved distribution of changes in cost.

We now characterize those changes in cost. For x ≥ 1, let M(x, t) be the probability that

a firm’s cost declines by a factor weakly less than x in an interval of length t. Because changes

in cost accumulate geometrically, it will be useful to work with the Mellin transforms of these

distributions.6 In particular, define φM (s, t) to be the Mellin transform of M(x, t), i.e., φM (s, t) ≡∫∞
1 x−sMx(x, t)dx.

Proposition 3 φM (s, t) = e
−ϕt

∑∞
k=1

s

βα−k+s

The kth term in the summation reflects the possibility of there being a new supplier k steps

upstream.7

At short horizons, the distribution of changes is lumpy. At longer horizons, the suitably nor-

malized distribution of changes converges to a standard normal, in accordance with the central

limit theorem.

Proposition 4 Let Xj(t) be the proportional decline of firm j’s cost over an interval of length t.

As t grows large,

1√
t

(
logXj(t)− α

1−α
ϕ
β t

α2

1−α2
2ϕ
β2 t

)
6Similarly to the Laplace and Fourier transform (i.e. the characteristic function), the Mellin transform of a distri-

bution entirely characterizes the distribution: the function φF (−s) yields all fractional moments s of F . Proposition
3 therefore fully characterizes the distribution of cost changes.

7The proof of Proposition 3 uses the (normalized) distribution of changes in cost over short horizons, m(x) ≡
limt→0

M(x,t)−1
t

. This satisfies m(x) = −ϕx−β/α + m
(
x1/α

)
; over short horizons, a firms cost declines by a factor

larger than x if it finds a new, better supplier that delivers a jump in effective cost larger than x1/α or because
its supplier’s cost falls by a factor greater than x1/α; at short horizons, the possibility of a mixture of the two is

negligible. Expanding this gives m(x) = −ϕ
∑∞
k=1 x

−βα−k

. The Mellin transform of (normalized) changes over short
horizons can be found by integrating

ϕm(s) =

∫
x−sdm(x) =

∫
sx−s−1m(x)dx = −ϕ

∞∑
k=1

s

βα−k + s
.

Finally, since changes in cost have i.i.d. increments, the distribution of cost changes over an interval of length t is
just the accumulation of the changes in cost over short horizons, ϕM (x, t) = etϕ

m(x).
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converges in distribution to a standard normal random variable.

2.5.3 The Cross Section

We now use these results to characterize distribution of cost in the cross section. In particular we

will characterize the Mellin transforms of the distribution of cost in the cross section and among

each cohort,

φF (s) ≡
∫ ∞

0
c−sdF (c) (2)

φFτ (s) ≡
∫ ∞

0
c−sdFτ (c) (3)

We first characterize entrants. (1) can be expressed as F0(c) = 1 − exp
{
−κ0ϕF (β)cβ/α

}
. As a

result, one can compute the integral in (3) for φF0 directly, giving

φF0 (s) = κ
α
β
s

0 φF (β)
α
β
s
Γ

(
1− α

β
s

)
(4)

where Γ(·) is the gamma function.

We next characterize firms of age τ . Firm j’s cost is the ratio of the cost at birth to the propor-

tional cost reduction since birth, cjt = cj,t−τ/Xj(τ). Since these are independent, the transform of

cost among those of age τ is thus

φFτ (s) = E
[
c−sjt

]
= E

[
c−sj,t−τ

]
E [Xj(τ)

s] = φF0 (s)φ
M (−s, τ). (5)

Finally, given the age distribution, the Mellin transform of those in the cross section is

φF (s) =

∫ ∞

0
γe−γτφFτ (s)dτ.

Plugging in the expressions for φFτ and φM and integrating yields

Proposition 5 The Mellin transforms of cost in the cross section and among entrants satisfy

φF (s) =
1

1 + ϕ
γ

∑∞
k=1

s
s−βα−k

φF0 (s)

and

φF0 (s) = κ
α
β
s

0 φF (β)
α
β
s
Γ

(
1− α

β
s

)
These transforms are sufficient to characterize the tail behavior of cost in the cross section:

Proposition 6 The distribution of cost in the cross-section has a power law left tail

lim
c→0

logF (c)

log c
= ν

11



where ν > 0 is the unique solution of γ
ϕ =

∑∞
k=1

ν
βα−k−ν .

2.5.4 Aggregate Output

Recall that, in this simple model, the distribution function F describes the distribution of cost

both among producing firms and among retailers, as we have assumed that the two types of firms

have the same production function and the stochastic process governing the arrival of new potential

suppliers is the same. Since labor used for production is (1− η)Lt, aggregate output is

Yt =

(
|Rt|

∫ ∞

0
c1−εdF (c)

) 1
ε−1

(1− η)Lt.

Since a fraction ζ of firms become retailers, the mass of retailers at time t is |Rt| =
∫ t
−∞ ζχηLt̃dt̃ =

ζχη
γ Lt = ζχη

γ L0e
γt. In addition, the integral is simply φF (ε − 1). Using these and dividing by

population gives output per capita

Yt
Lt

= (1− η)

(
ζχη

γ
L0e

γtφF (ε− 1)

) 1
ε−1

.

That is, output per capita grows at a constant rate γ/(ε− 1). As in other semi-endogenous growth

models, the economy’s growth rate is pinned down by population growth, but the level of output

per capita along a BGP is determined in the model.

We focus here on the special case in which β = ε−1, so that the elasticity of substitution across

producing firms is the same as a the elasticity of substitution among retailers.8 In this case, output

per capita simplifies to

Yt
Lt

= (1− η)

(
ζχη

γ
L0

) 1
β

[
κα0Γ (1− α)

1 + ϕ
γ

∑∞
k=1

1
1−α−k

] 1
1−α

1
β

e
γ
β
t
.

The numerator of the term in brackets summarizes the level of cost among newborn firms, whereas

the denominator captures the declines in cost over the life cycle as well as the age distribution

among firms. The exponent 1
1−α is the usual input-output multiplier, capturing the fact that a

decline in a firms’ cost will benefit its customers, its customers’ customers, etc. The exponent
1
β = 1

ε−1 captures the impact of the household’s willingness to substitute to the lower cost retailers.

3 Firm Dynamics with Firm-to-Firm Trade

In this section we describe several equilibrium outcomes of the model. In particular we show that

the model is consistent with a number of well-documented empirical regularities

The model is simple in the sense that there is just one type of shock in the model. Size depends

on how many customers a firm has and how big those customers are, which itself depends on how

8In the appendix we provide the general expression for when β ̸= ε− 1.
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many customers those customers have, how big those customers’ customers are, etc. The number

of customers a firm has depends on how many potential customers have arrived, which is random

with an arrival rate that is uniform across firms, how many of those potential customers chose to

switch to the firm, which depends on the firm’s cost (which evolves over time) and the draw of

match-specific productivity, which is random, and how long that customer chooses to stay with the

firm. Changes in size come from gaining or losing customers or customers growing and shrinking,

which comes from them gaining or losing customers, etc. All this is driven by a single shock, the

arrival of a new potential match. This is a supply shock to firms downstream from the potential

match and a demand shock for firms upstream from the potential match.

Despite the simplicity, the patterns of firm size, growth, and survival that emerge from this

model are quite rich. In this section we enrich the model by an industry dimension and calibrate

this model to Indian and Pakistani data, and show that it matches a number of well-documented

stylized facts about firm dynamics that canonical models of firm dynamics do not speak to.

3.1 Many Industries

We now introduce multiple industries. Each firm in industry ω ∈ Ω produces output using labor and

a fixed set of intermediate inputs according to the Cobb-Douglas production function with industry-

specific output elasticities of labor and each input, αωl and {αωω̂}ω̂ with αωl +
∑

ω̂ αωω̂ = 1. For

each industry ω̂ supplying inputs, firm j in industry ω has a single supplier denoted by s(j, ω̂) that

provides inputs xj,s(j,ω̂) and with whom firm j has match-specific productivity zj,s(j,ω̂). Firm j’s

output is

yj = Aωl
αωl
∏
ω̂∈Ω

(zj,s(j,ω̂)xj,s(j,ω̂))
αωω̂

with Aω ≡ α−αωl
ωl

∏
ω̂ α

−αωω̂
ωω̂ .

Retailers now purchase one input from each industry and combines them according to a Cobb-

Douglas production function.

At any point in time, each firm has a single supplier in each supplying industry for which

αωω̂ > 0. For each supplying industry, new potential suppliers arrive randomly and independent of

the arrival in other supplying industries. Each new potential supplier comes with a match-specific

productivity with an original component and a component inspired by the firm’s current supply

chain for that input. With multiple industries, the efficiency of the current supply chain for input

ω can be expressed iteratively. If firm j uses supplier s for input ω̂, the efficiency of j’s supply tree

for ω̂ can be expressed as

qjω̂ = zjs
∏
ω̃

qαω̂ω̃sω̃ . (6)

This formulation remains tractable because within each industry, the log cost of every firm

follows the same random walk (although the stochastic process for changes in cost is different for

firms in different industries). To see why, note that a weighted average of random walks is still a

random walk. If the weights are the same for all firms in an industry, then the log cost of every

13



firm in an industry will evolve according to the same random walk. This happens provided that all

firms in each industry produce using the same Cobb-Douglas production function.

Appendix D.1 extends the static equilibrium characterization of Section 2.3 to the multi-industry

model. We focus on the equilibrium in which the supplier of input ω̂ to a buyer in industry ω

receives transfer of surplus that is a share αωω̂ of the surplus received by the buyer. Again, this has

the interpretation that a retailer’s profit from sales to the household is split among all firms in its

supply chain in proportion to their expenditures on labor.9 Appendix D.3 provide analogues for the

multi-industry model to each of the results from Section 2.5 about the cross-sectional distribution

of cost and the distribution of changes in cost along a balanced growth path.

3.2 Calibration

This section describes our calibration, as summarized by Table I.

Parameter Value Target Target value Data source

Population growth (γ) 0.04 Employment share by age Hsieh & Klenow (2014)
New technique shape (β) 3.52 Cost reduction from new suppliers −0.284 Baqaee et al. (2023)

New supplier arrival rate (ϕ) 0.58 Mean relationship length 1.72 years Pakistan data
Observation threshold varies Median sales above threshold

Threshold
6.36 Pakistan data

Number of retailer firms ratio 60 Annual exit probability 0.05
Household EoS (ε) 4.52 β + 1

Table I Parameterization

ϕ is the arrival rate of new suppliers which reduce effective cost. When firms switch suppliers

at this rate (i.e., they choose the new supplier whenever it improves cost), the mean relationship

length is 1/ϕ. We set 1/ϕ to match a mean relationship length of 1.72, taken from the Pakistan

data (see Section 5).10

We turn next to β. Recall that when a firm gets a new supplier, the reduction in effective cost

follows a Pareto distribution with shape parameter β. Denote the effective cost of an input as λ.

The expected change in log effective cost is E[log( λλ′ )] =
1
β . The overall effect on marginal cost is

scaled by the firm’s expenditure share of that input. Baqaee et al. (2023) estimate an object using

Belgian data that is a close match to this. They estimate that when a firm gets a new supplier that

represent x% of the firm’s unit cost (for reasons unrelated to changes in the firm’s productivity),

the firm’s log unit cost declines by −0.284. This corresponds to β = 3.52.11

The rate of population growth, γ, which, along a BGP is equal to the rate of growth of the

number of firms, determines the shares of industry employment accounted for by old and young

9In this equilibrium, each firm in industry ω has a ratio of revenue to expenditure of ε
ε−αωl

. In addition, each firms
ratio of revenue to labor of w

αωl

ε
ε−1

. Thus within each industry, size as measured by revenue is always proportional

to size as measured by employment (although the constant of proportionality differs across industries).
10Note that κ is the deep parameter that governs the arrival rate of new potential suppliers, while ϕ ≡ κ

∫
c−βdF (c)

is endogenous. For our purposes, however, ϕ is a sufficient statistic which obviates the need to calibrate κ directly.
We target the level of ϕ here and will target changes in ϕ in our counterfactuals below.

11This parameter plays virtually no role in the patterns of firm dynamics, but affects the magnitude of the losses
from misallocation in Section 4.
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firms. We set γ = 0.04 to match these shares in India, as reported by Hsieh and Klenow (2014).

See Appendix C.1.1 for details.

We calibrate production function parameters by matching them to observed cost shares from

input-output tables which we construct from microdata on intermediate input use in the Indian

Annual Survey of Industries (data from 2003-2008). We assume that industries in the model

correspond to the 3,509 five-digit manufacturing industries present in these data. We make some

minor modifications to the input-output tables that increase the speed with which we can solve the

model by making the input-output tables more sparse. See Appendix C.2 for details.

Firms in the retail industry are supplied by intermediate industries. The retailer’s expenditure

shares are the same as each industry’s share of final sales that are observed in the Indian data.

Households have Dixit-Stiglitz preferences across retailers. We set the elasticity of substitution

across retailers to 4.

The number of retailers relative to those in other industries is important because it determines

how granular each retailer is. If there are many retailers relative to producing firms, then most

producers would sell to a large number of retailers. This would mean that most producers would

be active and would seldom exit. Further, firms would be diversified across customers, limiting the

volatility of firm sales. The parameter value ρR is the ratio of the number of retail firms to the

average number of firms in each non-retail industry. There are 3, 509 non-retail industries, so there

are ρR/3509 retail firms for every non-retail firm in the rest of the economy. We set ρR to match

an exit rate of 0.05.

Our data consists of firms that are sufficiently large to pass a statutory threshold for reporting.

The threshold varies with time but is the same across all industries. We impose a similar threshold

so that the moments we calculate are more easily compared with those in the data. In particular,

we set a threshold for firms to be “observed” in the model so that the ratio of median output of all

firms above the threshold to the threshold itself is 6.36.

Finally, we introduce negative drift so that the log of match-specific productivity declines at rate

ϕ/β. This makes it so that the expected change in log cost for each firm is zero. This adjustment

to the model allows for a better match to the empirical distribution of employment across cohorts.

We describe the simulation procedure in Appendix C.3.

3.3 Firm Dynamics Facts in the Model and the Data

With the calibrated model in hand, we now study how well it matches some stylized facts about

firm dynamics that the literature has documented.

3.3.1 Volatility and Firm Size

The strong version of Gibrat’s law (1931)—that the distribution of firm growth rates is independent

of firm size—has been repeatedly rejected. In particular, large firms tend to be less volatile than

small firms. This fact, pointed out as early as Meyer and Kuh (1957), Hymer and Pashigian (1962),
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and Mansfield (1962), has been corroborated across many different contexts.12 Figure 1a shows

this size-volatility relationship among firms in the US manufacturing sector from 2010-2015 using

FactSet Fundamentals data.13

Hymer and Pashigian (1962) suggested that a possible explanation for the negative size-volatility

relationship is that firms are composed of subunits and larger firms are composed of more subunits.

If each subunit has the same volatility, then larger firms would be less volatile because they are more

diversified. This type of mechanism is captured by Klette and Kortum (2004), in which a firm is a

collection of products over which the firm has patents, and each product evolves independently.14

In the model here, a firm’s size depends on its sales to its customers. Conditional on cost,

whether a firm gains or loses one customer is independent of the customer’s size, and whether a

one customer gains or loses customers is largely independent across customers. As emphasized by

Kramarz, Martin and Mejean (2020), since larger firms tend to have more customers they are also

more diversified.

A second important feature is that the size variance relationship is less sharp then what would

would be predicted by a model where a firm were composed of i.i.d. subunits. As noted by Hymer

and Pashigian (1962), in that case, volatility would decline at rate of σ(S) ∝ S−1/2. But the rate of

decline is typically slower. Stanley et al. (1996) indeed find a log linear relationship, σ(S) ∝ S−α,

among firms in Compustat with α ≈ 0.15, while Yeh (2023) finds an estimate close to 0.25 using

the US Longitudinal Business Database. The slopes of the fitted lines in Figure 1a are in this range:

0.18 for employment, .25 for sales.

We are aware of two types of explanations. First, as suggested by Hymer and Pashigian (1962)

and adapted by Stanley et al. (1996), there is some correlation of shocks across units.15 A second

explanation, advanced by Amaral et al. (1998), Sutton (2002), and Herskovic et al. (2020), is

that individual segments vary in size, with some segments much larger than others. As Gabaix

(2011) later explained, when individual components are granular, so that the size distribution of

12See Yeh (2023) and Coad (2007) for good reviews of the literature.
13Firms in this dataset are either publicly traded or have issued a security that are traded, such as corporate bonds.
14A number of papers, such as Lentz and Mortensen (2008), Akcigit and Kerr (2018), and Garcia-Macia, Hsieh and

Klenow (2019), build on Klette and Kortum (2004) and feature firm dynamics driven by product innovation (and
sometimes other types of innovation) at their core. One challenge for this class of explanations are findings from
Koren and Tenreyro (2013) and Yeh (2023). They respectively find that the size-volatility relationship is basically
unchanged when comparing firms with the same number of segments (Compustat data) or 6-digit products (US
Census data), or among firms with a single segment/product. It is of course possible that the relevant subunits are
not well captured by segments/products. Large firms also have more establishments than small firms, which may
lead to some diversification across establishment-level shocks, but Yeh (2023) finds that the size-volatility relationship
holds even after controlling for the number of establishments.

A second explanation is that volatility depends directly on age as it would in a Jovanovic (1982), and the size-
volatility relationship simply reflects the correlation of age and size. While volatility does indeed decline with age,
Yeh (2023) shows that the size-variance is nearly unchanged when controlling for age, either parametrically or using
cohort fixed effects. Yeh (2023) advances a third explanation that the pass through of productivity shocks into price
declines with firm size. In this view, i.i.d productivity growth rate shocks translate into less than one-for-one changes
in sales/employment because of imperfect pass through of cost into price. There is a demand system with the right
match between pass-through and size that delivers the size-variance relationship.

15Sutton (2002) examines segments data of Compustat firms and argues that the correlation of growth rates across
segments is too weak to explain the flatness of the relationship.
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Figure 1 Firm Size and Volatility

Note: Panel (a) shows the relationship between the standard deviation of firm growth rates and
firm size among firms in the US manufacturing sector from 2010-2015 from FactSet Fundamen-
tals. Panel (b) shows the relationship between firm size (demeaned by industry) and volatility
in the calibrated model.

components has a fat tail, the law of large numbers kicks in more slowly, so that the standard

deviation of growth rates declines more slowly than S−1/2. As an extreme example, if almost all of

a firm’s sales are from a single subunit, then its volatility will be almost the same as a small firm

with a single subunit, no matter how big the large firm is.

In the model, volatility declines with log size at a rate smaller than 1/2 mostly for this second

reason. Customers vary in size. Some larger firms have few customers, and a firm with many

customers may have most of its sales accounted for by few customers. While large customers are

likely to be less volatile, gaining or losing a large customer is a large event. Those shocks to large

customers are not diversified with shocks to smaller customers. In line with Kramarz, Martin

and Mejean (2020), a natural prediction of this model is that conditional on size and number of

customers, firms with a higher Herfindahl index of sales to customers will be more volatile.16

Table II shows the size-volatility relationship in the Pakistani data (first five columns) and

contrasts it with the same predictions in simulated data. The first column shows the usual negative

relationship between volatility and size. The second column shows that volatility declines with

number of buyers, although with a bit less explanatory power. The third column shows that

accounting for number of buyers weakens the size volatility relationship by about a third. The fourth

column shows that, conditional on size, firms whose sales are concentrated on few customers—as

measured by the HHI of sales across customers—are more volatile. Finally, the fifth column shows

that even controlling for size and the distribution of sales across buyers, a firm is less volatile when

its buyers are larger (and hence less volatile), as measured by a HHI where sales are weighted by

16In line with the first rationale for the weaker size variance relationship than 1/2, there is some correlation in
growth rate across a firm’s customers that comes from a firm’s own changes in cost. In our calibration, this is less
important quantitatively.
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buyer size.17

In the simulation, the sales-volatility relationship is somewhat stronger than in the data.18 That

said, the match of relative magnitudes between the data and the calibrated model are remarkably

similar, as the coefficients from the regressions using simulated data are roughly double those using

actual data. Volatility declines faster with number of customers than with sales, but number of

buyers has less explanatory power; once one controls for the number of buyers, the volatility-sales

relationship weakens by roughly a third; the HHI better accounts for volatility than number of

buyers; and conditional on the distribution of sales across buyers (as captured by the HHI), having

larger buyers reduces sales.

Data Simulation

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

log(Sales) -0.138 -0.092 -0.105 -0.103 -0.3021 -0.2424 -0.2259 -0.2256
(0.0018) (0.0025) (0.0022) (0.0022) (0.0007) (0.0009) (0.0008) (0.0008)

log(Buyers) -0.217 -0.111 -0.4962 -0.1845
(0.0031) (0.0042) (0.0014) (0.0018)

log(HHI) 0.152 0.202 0.3179 0.4224
(0.0055) (0.0067) (0.0017) (0.0112)

log(HHI (weighted)) -0.051 -0.1058
(0.0037) (0.0112)

Fixed Effects
Industry Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Statistics
R2 0.263 0.244 0.286 0.287 0.289 0.7667 0.7393 0.7713 0.781 0.781
R2-within 0.197 0.175 0.221 0.223 0.225 0.2674 0.1814 0.282 0.3123 0.3124
Observations 23,034 23,034 23,034 23,034 22,552 538,784 538,784 538,784 538,784 538,784

Standard errors in parentheses. The dependent variable is the log standard deviation of log salest+1 − log salest.

Table II Determinants of firm growth volatility
Note: The table shows regressions of the log standard deviation of log Salest+1 − log Salest (calculated within
firms, over time) on the respective firm characteristic, averaged across time t. Buyers is the number of firms that
purchase a positive amount from the firm in the given year. The HHI for firm j is defined as

∑
b(share of salesjb)

2.
The HHI(weighted) for firm j is defined as

∑
b(share of salesjb)

2(Sizeb)
0.2, where the exponent 0.2 is motivated

by the baseline size-volatility relationship. Columns (1) to (5) use data from Pakistan, 2011-2018; columns (6) to
(10) use data simulated from the model.

3.3.2 Fat Tails of the Growth Rate Distribution

Another striking feature of firm growth rates is that the distribution features fat tails. This is true

for the unconditional distribution, as can be seen in panel (a) of Figure 2 as well as conditional on

initial size.

17The HHI for firm j is defined as
∑
b(share of salesjb)

2. The HHI(weighted) for firm j is defined as∑
b(share of salesjb)

2(Sizeb)
0.2, where the exponent 0.2 is motivated by the baseline size-volatility relationship.

18There could be two reasons the size-volatility relationship in the model is stronger in the model than in the data.
First, it could be that the model is missing an important element that mediates the size-volatility relationship, such
as the possibility of multi-product firms; the model is, of course, quite stylized along other margins. A second possible
reason is that there is a mismatch between size as measured in the model and size as measured in the data due to,
e.g, the discreteness of shipments or partial year effects, which would dampen the relationship in the same manner
as classical measurement error.
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Figure 2 The distribution of firm growth rates

Note: Panel (a) shows the distribution of firm growth rates among manufacturing firms in various
countries using data from FactSet Fundamentals, 2010-2015. Panel (b) shows the distribution
of growth rates in the calibrated model.

Some studies have argued that the distribution of changes in log size follows a Laplace distribu-

tion (back to back exponentials), e.g., Stanley et al. (1996), Bottazzi and Secchi (2003, 2006), and

Bottazzi, Kang and Tamagni (2023). This would mean that on a log-log plot such as in Figure 2,

the distribution is piecewise linear. Some studies find even fatter tails than Laplace.

The model here has the property that the distribution of growth rates features fat tails. Extreme

increases or decreases in size can come from gaining or losing a very large customer. Thus even

conditional on size, there can be extreme growth events.

3.3.3 Firm Exit

Another well-known fact about firm dynamics is that larger firms are more likely to survive than

smaller firms, Mansfield (1962), Hall (1987), Evans (1987b,a). Some models, such as Hopenhayn

(1992) or Luttmer (2007), feature a simple cutoff rule, so that a firm exits when its size drops below

the cutoff. This pattern of exit predicted by these models is, of course, much more stark than in

the data. In the data, smaller firms are, in fact, more likely to exit. But there are many very small

firms that survive, and some very large firms that exit.

A number of papers intend to capture this in a simple way by incorporating both exogenous

exit with a fixed opportunity cost of operations, and an exogenous death shock that is i.i.d. across

firms and over time, which causes a firm to exit. Again, this does not capture the gradual decline

of exit rates with size.

In this model, a firm exits once its last customer switches to an alternative supplier. Some large

firms may exit when they have only one large customer and that customers switches away to a new

supplier. But most large firms will have many customers, so the probability of exit is small. The

probability of exit is smoothly declining in firm size because the probabilities of having a single
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Figure 3 Firm Size and Probability of Exit

Note: This figure shows exit rates for US firms using BDS data and exit rates as predicted by
the calibrated model.

customer and of not gaining any additional customers are both smoothly declining in firm size.

This logic is also used by Garcia-Macia, Hsieh and Klenow (2019) who use a model in the spirit

of Klette and Kortum (2004) but with dispersion in market size across products. They observe

only survival and changes in employment, but they discipline the dispersion in market size across

products using how the exit rate varies with firm size.

In Appendix B.2, we show that number of buyers is a good predictor of exit rates among firms

in Pakistan. In a horse race, number of buyers has very similar predictive power for exit as size.

(R-squared of 9% and 10%, respectively). Further, once we include the number of buyers, the

additional predictive power from size is small, rising from 9% to 11%.19

3.3.4 Gazelles

Many models of the firm size distribution or of the wealth distribution have trouble matching the

quickness with which individuals end up in the right tail (Luttmer, 2011, Gabaix et al., 2016).20

Luttmer (2011) proposed introducing a persistent (but not permanent) state that he labeled quality

19Note that the model predicts that number of buyers is not a sufficient statistic for a firm’s exit rate, and that
the exit rate should be declining in size even when conditioning on the number of buyers. For example, consider two
firms, each with one customer. Suppose that the first firm’s customer is large because it has many customers while
the second firm is small because it has only a single customer. The first firm will exit if its customer switches away.
The second firm will exit if its customer switches away or if its customer’s customer switches away. Thus even among
these two firm with the same number of customers, the larger one is less likely to exit. In Appendix B.2 we show the
same regression specifications using data generated by the model. The number of buyers is a better predictor of exit
than sales, but, conditional on the number of buyers, sales adds some predictive power.

20According to Luttmer (2011), the median age of firms above 10,000 employees is 75 years. He argues that a model
in which the volatility of firm growth is independent of size can get close to this when the volatility is calibrated to
that of small firms, but models that match the volatility of large firms predict that the largest firms would be much
older than in the data.
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that determined the firm’s growth rate. Gabaix et al. (2016) call this heterogeneity in expected

growth rates “type dependence.” This made it possible for some young firms to move into the

right tail of the firm size distribution quickly. And random transitions from high quality to low

quality made it possible for the right tail of firm size distribution to follow a power law. In a similar

vein, Sterk, Sedláček and Pugsley (2021) estimate a statistical model of firm size and age. They

emphasize the role of a firm’s unobserved “ex ante” type, which they argue determines most of

the dispersion in firm size among a cohort in its first year and almost half of the dispersion at age

twenty. Firms that exhibit persistently high growth rates are often called “gazelles”.

The model here naturally exhibits these features. Firms differ in growth trajectories partly

because they differ in production cost; a firm with a low production cost expects to acquire cus-

tomers more quickly. A firm with an especially low production cost may experience persistently

high growth rates. Further, as in Luttmer (2011), this “high-growth” state is likely to be persis-

tent but not permanent, as a firm eventually reaches a size where expected outflows of customers

matches expected inflows.21

While there is no consensus on the definition of a gazelle or on a procedure to detect the

presence of gazelles, we propose here a crude such procedure. Firms expand by adding customers

and contract when customers leave. Given a firm’s unit cost, there is an expected size at which

the expected inflow of customers equals the expected outflow, and customers are roughly average

size. A firm that is close to its expected size is likely to fluctuate around its expected size, yielding

negative autocorrelation in growth rates. A firm that is far from its expected size is likely to

gradually converge to its expected size, yielding positive autocorrelation in growth rates. We first

ask whether positive growth in one year predicts positive growth in the next year. The set of firms

that have positive growth in the first year are likely to be a mixture of the two groups, so positive

growth should not be a strong predictor of subsequent growth. We next ask how well positive

growth in n consecutive years predicts positive growth in the subsequent year. The higher is n, the

more the composition of firms with n consecutive years of positive growth is tilted toward those that

are gradually converging to their expected cost and away from those that are fluctuating around

their expected cost. As a result, we expect that having n consecutive years of positive growth to

more strongly predict positive subsequent growth when n is higher. Figure 4 shows estimates from

separate regressions of positive growth on an indicator for n-consecutive years of positive growth

and industry fixed effects, with n varying from one year to twelve years in our simulation, and one

year to five years in our data on Pakistan (we are limited by the length of the panel). We can do this

exercise for growth in sales or for growth in number of customers. Both the data and the simulation

suggest the presence of gazelles, in that the four curves are upward sloping: n consecutive years

of positive growth covaries more strongly with positive growth in the subsequent year when n is

larger.

Newborn firms in particular are likely to be far from their expected size because older firms

21Any model with strong enough adjustment frictions and otherwise standard firm dynamics will feature gazelles.
Customer accumulation is one such friction. Bilal et al. (2022) argue that hiring frictions work as well.
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Figure 4 Detecting Gazelles

Note: Each point shows the estimates from a regression of an indicator of positive growth on
an indicator of positive growth in each of the last n years and industry fixed effects. The left
panel shows results from Pakistan VAT data, with n varying from 1 to 5, while the right panel
shows the results from the simulation of the model, with n ranging from 1 to 12.

with a low cost have had time to accumulate customers and converge to their expected size. Since

newborn firms are likely to be converging gradually to their expected size whereas older firms are

likely to be fluctuating around their expected size, we would expect the autocorrelation of growth

rates to decline with age. In line with this, Coad, Daunfeldt and Halvarsson (2018) find that

autocorrelation of growth rates is positive for young firms and negative for older firms, providing

evidence that some “young firms experience a sudden burst of growth shortly after entry, and that

soon afterwards their growth rates slow down and become more erratic.”

To get at this prediction, Table III shows regressions of an indicator of positive growth in one

year on an indicator of positive growth in the previous year, interacted with age. As the second

row of the table shows, younger firms with positive growth are more likely to experience positive

growth in the subsequent year than older firms with positive growth.22

22Coad, Daunfeldt and Halvarsson (2018) caution that the fat tails of firm growth rate distribution complicate the
measurement of autocorrelation of growth rates. Our use of an indicator function of positive growth is one approach
that is robust to fat tails of the growth rate distribution. Coad, Daunfeldt and Halvarsson (2018) use median
regressions. In Appendix B.3 we use the same quantile regression as specified in Coad, Daunfeldt and Halvarsson
(2018) on model-generated data. The result gives the same message as Table III: autocorrelation declines with age.
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Table III Autocorrelation and Age

Dependent variable: Positive sales growth between t and t+ 1

Data Simulation

(1) (2) (3) (4)

Positive sales growth between t− 1 and t 0.0972∗∗ 0.0926∗∗ -0.120** -0.052**
(0.015) (0.015) (0.003) (0.003)

Pos. sales growth between t− 1 and t × Log Age -0.0227∗∗ -0.0250∗∗ -0.014** -0.025**
(0.0046) (0.0045) (0.001) (0.001)

Log Age 0.00366 0.00563 -0.021** -0.008**
(0.0040) (0.0040) (0.001) (0.001)

Log Sales 0.0171∗∗ -0.052**
(0.00090) (0.000)

Industry FE Yes Yes Yes Yes

R2 0.0149 0.0203 0.032 0.065
Within R2 0.00182 0.00734 0.028 0.061
Observations 65717 65717 651,480 651,480

Standard errors in parentheses. Columns (1) and (2): data from Pakistan; only one cross-section (firms with
positive sales in 2017) used.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

4 Contracting Frictions and Long Term Relationships

In this section we introduce the contracting frictions and relational contracts. When courts are less

efficient and thereby inhibit the enforcement of contracts, firms will prefer to use relational agree-

ments with their suppliers and will switch suppliers of relationship-specific goods less frequently. In

particular, for users of relationship-specific inputs, the arrival rate of new suppliers of those inputs

will be lower when enforcement is poor. As we will show in Section 5, this view will be consistent

with data from India and Pakistan.

At this point, we introduce the decline in the arrival rate of new suppliers when contracting

frictions are worse as a behavioral assumption. In Subsection 4.1 we discuss a potential microfoun-

dation for this behavior as resulting for the use of relational contracting as a substitute for courts.

A relational contract is a repeated game, and there are many equilibria. At this point, we can show

for a special case of the model that a uniform decline in κ for relationship-specific inputs is indeed

an equilibrium.

4.1 Microfoundation

A contract between a buyer-supplier pair specifies, in addition to a quantity and a transfer, a level

of defectiveness δ ∈ [0, 1]. With commitment, surplus between the buyer and supplier is maximized

at δ = 0. The supplier can produce a defective input. Doing so reduces the supplier’s cost, but

increases the probability that the output will be defective.

If the output is defective, the buyer has a claim on the supplier. This claim can be enforced in

court. But delay in court reduces value of payment, and the cost of the delay is proportional to

23



value of transaction.

In a one shot game, both the buyer and supplier would anticipate that the supplier would make

a defective input. Even though the price paid by the buyer would reflect this, the defectiveness still

reduces the static surplus from the relationship.

As usual, there is an equilibrium in which the static Nash outcome is played at each instant.

But there is another, equilibrium that pareto dominates. In this relational contract, the supplier

chooses δ = 0, and the buyer chooses a lower arrival rate of new suppliers (which is observable to

supplier, but not the court). Doing this makes the relationship likely to last longer, raising the

supplier’s surplus from the relationship in a way that is backloaded.

The relational contract is enforced with trigger strategies. If the supplier does not customize,

the buyer does not reduce arrival of new suppliers. If the buyer does not reduce arrival rate, the

supplier stops customizing. The supplier’s punishment for defective inputs is that the relationship

ends faster and enforcement in court. As a result, better formal enforcement reduces the need for

the buyer to make the relationship last longer.

4.2 Slow Firm Dynamics

To explore the implications of weak contract enforcement, we turn to a numerical simulation of the

model. There is only one change in the model, a reduction in the arrival rate of new suppliers of

relationship-specific inputs. But this manifests itself in a number of ways.23

For each figure below, we simulate an economy under two scenarios, one with court congestion

and one without. In each, only a subset of industries produce relationship-specific inputs. In the

scenario with more court congestion, any firm that uses relationship-specific inputs sees a slower

arrival rate of new suppliers of those inputs. In all figures below, we plot statistics for the subset of

industries that produce relationship-specific inputs, to compare firm dynamics for those industries

across the two economies. This will make the predictions comparable to our empirical difference-

in-difference strategy that we will use below.

In the first scenario, labeled “no friction,” court congestion is such that the average case age

is one year, corresponding roughly to the fastest courts in India. In the second, labeled “with

friction,” courts are more congested and the average case age is four years, corresponding roughly

to the slowest courts in India. Our empirical findings below (Table IV) indicate that for each

additional year of court delay, relationships among buyer-supplier pairs where the supplier produces

relationship-specific inputs last about 0.25 years longer compared to relationships where the supplier

produces standardized inputs.

Volatility—First, we show how contracting frictions change the overall distribution of firm

growth rates. Figure 5 shows the density of changes in log size among all firms in industries

that produce relationship-specific goods. With more severe contracting frictions, the distribution

23For now, we hold entry fixed in counterfactuals. While the adjustment of entry will affect aggregate output, it
will not affect patterns of firm dynamics that we document in this section. We are currently working on incorporating
changes in entry.
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of firm growth rates is more concentrated. There are more firms that have smaller growth rates, and

fewer firms with extremely large or extremely small growth rates. This is a natural consequence of

slower gain and loss of customers. Figure 6 shows the impact of relational contracting on firm-level
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Figure 5 Distribution of Changes in Log Size

Note: This figure shows the density of changes in log size among firms in industries that produce
relationship-specific industries.

volatility. With more severe contracting frictions, the standard deviation of changes in log sales is

lower, as firms gain and lose customers more slowly. Panel (a) shows lower volatility conditional

on size, and panel (b) shows lower volatility conditional on age.
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Figure 6 Volatility

Note: For each size or age bin, this figure shows the standard deviation of the log change in size
among firms in industries that produce relationship-specific industries.

Mean Reversion—Figure 7 shows that relational contracting leads to slower mean reversion.

The two panels show the change in log size conditional on initial size, where change in log size is
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measured either by sales in panel (a) or by number of customers in panel (b). In either case, small

firms grow more slowly, as customers are less likely to switch to them. And large firms shrink more

slowly, as they are more likely to keep each customer for longer.
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Figure 7 Mean Reversion

Note: This figure shows changes in log sales and changes in the log of number of customers for
firms of various initial sizes.

Size Distribution—Figure 8 shows the right tail of the within-industry size distribution for

industries that produce relationship-specific inputs on a log-log plot. Here, a steeper curve means

a thicker right tail. The figure shows that relational contracting leads to a firm size distribution

with a thinner right tail. Without the contracting friction, the firms that are in the right tail of

the firm size distribution are ones that have a low cost and have been lucky enough to have had

many potential customers arrive. With long-term relationships, potential customers do not arrive

as quickly, so that firms with a very low cost cannot attract new customers as quickly, and therefore

do not grow as large.

Exit—Figure 9 shows exit rates among those that produce relationship-specific goods, by size

and by age. With imperfect enforcement, exit rates are lower. A firm exits when it loses its last

customer. With relational contracting, firms are less likely to lose their customers in equilibrium,

so that a firm that is down to its last customer is less likely to lose that customer and hence less

likely to exit.

To summarize, in industries that produce relationship specific inputs, when enforcement is

worse, firms have (i) a lower variance of growth rates; (ii) less mean reversion in size; (iii) a less

skewed size distribution; (iv) a lower probability of exit.
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Figure 8 Right Tail of the Firm Size Distribution

Note: This figure shows changes in log sales and changes in the log of number of customers for
firms of various initial sizes.
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Figure 9 Exit Rates by Size and Age

Note: This figure shows exit rates for industries that produce relationship-specific inputs with
perfect contract enforcement and with imperfect enforcement. Panel (a) shows exit rates by
size. Panel (b) shows exit rates by age.
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5 Testing the Model’s Predictions

In this section we use data from India and Pakistan to assess the predictions of the model. We first

describe the data and the setting, discuss our approach, and then proceed to contrast the model’s

predictions with empirical patterns in the data.

5.1 Data and Approach

Production and Transactions Data—We use two complementary datasets. First, we use data from

India’s Annual Survey of Industries (ASI), an unbalanced annual panel of manufacturing plants

from India’s formal manufacturing sector. In any year the survey covers all plants with more than

100 employees, and about a fifth of all plants that have between 20 and 100 employees (10 and 100

employees if the plant uses power). We use ASI rounds from 1990 to 2015.

Second, we use monthly firm-to-firm transactions data from VAT records in Pakistan. The

data encompasses all transaction between formal firms that are subject to and registered for VAT:

importers and wholesalers, as well as manufacturers and retailers above 5-10m Pakistani rupees

in revenue in the previous year.24 The data contains monthly transactions for the fiscal years

2011-2012 to 2017-2018, which we aggregate to the annual (fiscal year) level.

Court Congestion—We use data on the average age of civil cases that are pending, at the end

of the calendar year 2016, in Indian High Courts, as constructed by Boehm and Oberfield (2020).

These measures vary at the state level, from less than one year in Goa and Sikkim, to about four

and a half years in Uttar Pradesh and West Bengal. While data on lower-level courts is available

and would offer potentially more variation to exploit, Indian firms typically have the (sometimes

de jure, often de facto) ability to bypass lower courts, making High Courts the most relevant ones

for enforcement of contract cases.

For Pakistan our measure of court congestion is, similarly to India, the average age of pending

civil cases, which we construct from various reports of the Judicial Statistics of Pakistan (National

Judicial Policy Making Committee, 2021). In contrast to India however we construct this for district

courts due to the lower number of provinces (the most closely corresponding administrative unit

to Indian states in Pakistan). We also have no indication that parties are able to bypass district

courts in Pakistan. Most of our data on Pakistani courts pertains to the year 2020, but we use

within-province variation for some states from earlier years (see Appendix A for details).

Approach—The regressions below study the differential impact of court congestion on industries

that produce relationship specific goods relative to industries that produce standardized goods. For

relationship-specific goods the firms potentially face a hold-up problem, which an effective court

system can resolve. All regressions include both industry and region (states in India, districts in

Pakistan) fixed effects. This is to control for the impact of factors such as the level of development,

24The exact threshold for VAT registration varies over the years, and some sectors or ownership structures are
excluded. Balboni, Boehm and Waseem (2024) provide summary statistics of the data and compare it to statistics
from national accounts.

28



population density, the state of technology, to the extent that they have a similar impact on

standardized and relationship specific industries.

One might naturally worry that court congestion is endogenous, or that it might be correlated

with local features such as the level of development that may differentially impact firm dynamics for

firms that produce relationship-specific goods relative to those that produce standardized goods.

For India, we use two additional approaches, following Boehm and Oberfield (2020). First, we

employ the log age of the court as an instrumental variable for court congestion, based on the fact

that congestion increases over time, courts start out uncongested, and the creation of new courts

is linked to political subdivisions of states, which is unrelated to congestion or industry structure.

Second, we control for the interaction of relationship-specificity with a variety of local features that

may be correlated with court congestion. We discuss the latter in Section 5.7.

Each of the two data sources offers advantages and disadvantages. For the ASI data from India

we have precise information on the 5-digit products sold by the plant, whereas in the Pakistan

data we have only the two-digit industry of the firm, and we cannot see the products in each

transaction. There is also more variation in court congestion across states within India, and we

have an instrument for court congestion. The advantage of the VAT data from Pakistan is that we

can see the firm-to-firm transactions, and the data comes at the firm level rather than the plant

level. We show regressions using the data that is more suitable for the purpose (i.e. generally India,

unless we need information on transactions, buyers, suppliers, or exit rates, in which case we use

data from Pakistan), and show results with the other dataset (whenever possible) in the Appendix.

5.2 Court Congestion and Relationship Length

We first provide evidence on how court congestion affects the length of relationships. The dependent

variable in Table IV is the time elapsed between the date of the first transaction and the date of

the last transaction of the firm pair, in years. We use the data from Pakistan, where the average

duration of relationships is 1.72 years.

When a firm-to-firm transaction is between firms in different districts, the firms may have the

freedom to sign contracts that will be enforced in either the buyer’s or the supplier’s district.

In column (1) of Table IV, we assess the impact of court congestion in the buyer’s district, the

supplier’s district, and the minimum of the two. In each case, we find that a more congested court is

associated with longer duration when the supplier produces a relationship-specific good compared

to when the supplier produces a standardized good.

The first three columns use a measure of relationship specificity from Rauch (1999). The last

two columns used a measure of enforcement intensity that is specific to the supplier industry-buyer

industry pair from Boehm (2022), based on the frequency of litigation between buyers and suppliers

in those industries.
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Dependent variable: Age of Relationship (in Years)

(1) (2) (3) (4) (5)

Age of pending cases (S) × RelSpecS 0.225∗∗

(0.045)

Age of pending cases (B) × RelSpecS 0.0638
(0.045)

Age of pending cases (Min(B,S)) × RelSpecS 0.281∗∗ 0.264∗∗

(0.032) (0.041)

Age of pending cases (Min(B,S)) × EnforcementIntensityb,s 0.0228∗ 0.0258∗

(0.011) (0.013)

B × S Industry FE Yes Yes Yes Yes Yes
B District FE Yes Yes Yes
S District FE Yes Yes Yes
S District × S Industry FE Yes Yes
B District × B Industry FE Yes Yes

R2 0.0630 0.0636 0.0929 0.0625 0.0922
Observations 2140189 2142616 2141943 2142616 2141943

Standard errors in parentheses, clustered at the origin-destination district level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table IV Relationship Duration and Court × Enforcement Intensity interaction
RelSpecS is a industry-level average of Rauch (1999)’s conservative measure of relationship-specificity (where a
good is considered relationship-specific if it’s not traded on an organized exchange, and there is no reference price).
EnforcementIntensityb,s is z(1) from Boehm (2022), scaled to have a standard deviation of one.

5.3 Firm Volatility

We next turn to manufacturing data from India’s ASI to assess the predictions described in Sec-

tion IV. Table V shows the impact of court congestion on firm volatility. The dependent variable

is the standard deviation of annualized, residualized sales growth within each state-industry-year.

These sales growth rates are residualized with respect to age, year, state and industry.

The first two columns estimate coefficients using ordinary least squares, while the third and

fourth columns show IV regressions using the age of the court as an instrument for court congestion.

The second and fourth columns control for average growth of those firms. In all cases, more severe

contracting frictions reduce the volatility of firm size.

5.4 Mean Reversion

Table VI shows the impact of contracting frictions on the rate of mean reversion. The first row shows

the baseline rate of mean reversion for plants in industries that produce standardized goods. The

coefficient is negative, meaning that larger firms grow slowly. The second row shows the differential

degree of mean reversion for firms that produce relationship-specific goods and are located in states

with worse enforcement. Across specifications, the point estimate is positive, meaning that the rate

of mean reversion is smaller when contracting frictions are present.
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Dependent variable: σ(∆ log Sales)dω

(1) (2) (3) (4)

Avg age of civil cases × Rel. spec. -0.0177∗ -0.0187∗ -0.0401∗ -0.0385∗

(0.0089) (0.0088) (0.016) (0.016)

(∆ log Sales)dω -0.273∗∗ -0.273∗∗

(0.024) (0.024)

State FE Yes Yes Yes Yes
5-digit Industry FE Yes Yes Yes Yes

Estimator OLS OLS IV IV

R2 0.287 0.302 -0.000369 0.0207
Observations 7574 7574 7574 7574

Regression at the state × industry level. Only state-industry cells with more than 5 observations used.

Table V Lower variance of sales growth when frictions are large

Dependent variable: Change in log Sales

(1) (2) (3) (4) (5) (6)

log Salest−1 -0.403∗∗ -0.427∗∗ -0.555∗∗ -0.403∗∗ -0.436∗∗ -0.583∗∗

(0.011) (0.025) (0.037) (0.012) (0.028) (0.038)

log Salest−1× Age civ. cases × relspec 0.00709+ 0.0206∗ 0.0249+ 0.00687 0.0256∗ 0.0405∗

(0.0037) (0.0096) (0.015) (0.0044) (0.012) (0.019)

Plant × 5-digit Industry FE Yes Yes Yes Yes Yes Yes
State FE Yes Yes
Year × Previous Year FE Yes Yes
Age FE Yes Yes Yes Yes
Industry × District × Year FE Yes Yes
Industry × District ×(t, t− 1) FE Yes Yes

Method OLS OLS OLS IV IV IV

R2 0.457 0.636 0.671 0.256 0.250 0.278
Observations 204518 78053 51401 204518 78053 51401

Standard errors in parentheses, clustered at the state × industry level.

Table VI Mean Reversion

5.5 Size Distribution

Table VII shows the impact of contracting frictions on the skewness of the plant size distribution.

To measure skewness in the right tail of the plant size distribution, we use a statistic that measures

the slope of the log-rank, log-size plot, following Chen (2023). In particular, for any two quantiles

of the overall size distribution, S0 and S1, we compute skewness of the size distribution in a state-

industry-year as

log (Share of plants above S1)− log (Share of plants above S0)

logS1 − logS0

The various columns of the table use different combinations of quantiles of the overall plant size

distribution (25th, 50th, and 75th, 90th).
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Across specifications, we find that more severe contracting frictions are associated with less

skewed plant-size distributions.

Dependent variable: Skewness of log Sales

(1) (2) (3) (4) (5) (6)

Relspec x Court Congestion -0.360∗ -0.671∗ -0.799∗∗ -0.624+ -1.312∗ -0.905
(0.168) (0.287) (0.294) (0.349) (0.598) (0.578)

R2 0.540 0.435 0.554 0.001 0.000 0.007
State FE Yes Yes Yes Yes Yes Yes
5-digit Industry FE Yes Yes Yes Yes Yes Yes

Estimator OLS OLS OLS IV IV IV

Statistic 25-75 50-75 50-90 25-75 50-75 50-90
Observations 3008 3008 1448 3008 3008 1448

Table VII Skewness of Firm Size Distribution

5.6 Exit Rates

Table VIII shows the impact of contracting frictions on exit rates, using data from Pakistan. The

dependent variable is the exit rate for each size quartile of the industry-district-year. Columns (1),

(2), and (3) are included to show the baseline exit rates. Column (4) shows the differential impact

on the exit rates for industries that produce relationship-specific goods. We find that more severe

contracting frictions are associated with lower exit rates.

5.7 Robustness

In our regressions on Indian plants, our main specification uses, as size, a plant’s total sales. In

Appendix B.5.1 we study how contracting frictions affect mean reversion and volatility among two

subsets of plants: those that produce a single five-digit product and those that operate as a single-

plant firm.25 In both cases, the results are consistent with our baseline specification, that more

severe contracting frictions lead to slower firm dynamics.

As discussed earlier, locations with congested courts may be different from other locations in a

number of ways. It is possible that court congestion is correlated with some other local characteristic

such as the level of development, that differentially affects firms that produce relationship-specific

goods relative to those that produce standardized goods. We explore this by adding to our baseline

regressions interactions of relationship specificity and the following local characteristics: log income

per capita, a measure of trust, linguistic fragmentation, fragmentation by caste, and corruption.

In Appendix B.5.2, we show that our main coefficients of interest change little when adding these

additional controls.

Industries that produce relationship-specific goods are different from industries that produce

standardized goods, e.g., in upstreamness or in capital intensity. It is possible that it is through

25Each plant is associated with an indicator of whether it is a standalone plant or member of a multi-plant firm.
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Dependent variable: P(exit)

(1) (2) (3) (4)

Q1 Dummy 0.0738∗∗∗ 0.0717∗∗∗

(0.0023) (0.0057)

Q2 Dummy 0.0255∗∗∗ 0.0208∗∗∗ -0.0460∗∗∗ -0.0469∗∗∗

(0.0018) (0.0033) (0.0013) (0.0042)

Q3 Dummy 0.0131∗∗∗ 0.00979∗∗∗ -0.0576∗∗∗ -0.0567∗∗∗

(0.00099) (0.0016) (0.0016) (0.0043)

Q4 Dummy 0.00800∗∗∗ 0.00677∗∗∗ -0.0611∗∗∗ -0.0586∗∗∗

(0.00071) (0.0011) (0.0018) (0.0044)

Q1 × Relspec × AvgAgeCourts 0.00129 -0.00539∗

(0.0026) (0.0025)

Q2 × Relspec × AvgAgeCourts 0.00299∗ -0.00501∗∗

(0.0014) (0.0019)

Q3 × Relspec × AvgAgeCourts 0.00221∗ -0.00627∗∗∗

(0.00099) (0.0016)

Q4 × Relspec × AvgAgeCourts 0.000871 -0.00755∗∗∗

(0.00087) (0.0016)

Industry × Year FE Yes Yes

R2 0.0525 0.0526 0.0460 0.0462
Observations 417711 411541 417698 411528

Standard errors in parentheses, clustered at the industry-region level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table VIII Exit Rates by Size

one of those other industry characteristics that court congestion affects firm dynamics. To address

this, we incorporate specifications in which we control for the interactions of court congestion

with the following industry characteristics: capital intensity, industry wage premium, the share of

contract workers, industry upstreamness, and tradability. As we report in Appendix B.5.3, the

main coefficients of interest are insensitive to incorporating these additional controls.

6 Aggregate Productivity

In this section we return to the calibrated model to assess the impact of weak contract enforcement

on aggregate productivity. In the face of weak formal enforcement, firms are less likely to encounter

and switch to suppliers with lower cost, which reduces aggregate productivity. We can see this

misallocation in two complementary ways: (i) the correlation between log cost and log size, and

(ii) dispersion in size among those with the same cost.26

Table IX shows the correlation of cost and size among firms that produce relationship-specific

inputs, using simulated data, for industries with and without frictions. The correlation is measured

across all such firms in two ways, first by subtracting the industry mean from each observation, and

26There is a parallel between these two complementary measures of misallocation with the slope coefficient and
R-squared of a regression as complementary measures of explanatory power.
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second by subtracting the industry mean and dividing by the industry standard deviation. In either

case, the correlation is weaker in the economy with more severe contracting frictions, indicating

more severe misallocation.27

Model Correlation (demeaned) Correlation (normalized)

No friction -0.281 -0.370
With friction -0.260 -0.340

Table IX Correlation of Log Cost and Log Size

Note: This table shows the correlation of log cost and log size among firms that produce
relationship-specific inputs. The correlation is measured across all such firms. In the column
labeled “demeaned,” we subtract from each firm’s log cost and log size the respective industry
mean. In the column labeled “normalized,” we subtract the industry mean and divide by the
industry standard deviation. Data from simulations of the calibrated model.

Figure 10 shows a second measure of misallocation, the dispersion in size among firms in the

same cost decile. For almost every cost decile, there is more dispersion in size when contracting

frictions are more severe.28
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Figure 10 Dispersion in Size for each Cost Bin

Note: This figure shows the standard deviation of log employment among firms with the same
cost, among firms in industries that produce relationship-specific industries. Data from simula-
tions of the calibrated model.

Finally, Table X shows the implications for aggregate productivity. We conduct a counterfactual

where we adjust κ (or likewise ϕ) to move from a situation where the average age of pending court

cases is four years, to one where it is one year, as captured by the slope of 0.25 of the relationship

duration to court congestion relationship (Table IV), holding the production function and demand

27Even without contracting frictions , there will be an imperfect correlation between log cost and size, because of
the random arrival of customers and the random sizes of those customers.

28The exception is the lowest cost decile, in which dispersion in size in the economy with less severe contracting
frictions is driven by the thicker right tail of the firm size distribution, as discussed in Section 4.
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parameters (weights of industries in final demand) constant. As discussed in Section 2, the growth

rate of aggregate productivity is invariant to long term relationships, as this depends only on the

population growth rate (the model is one of semi-endogenous growth). Nevertheless, the contracting

frictions reduce the level of aggregate productivity. In particular, by reducing the rate of reallocation

of buyers across suppliers, court congestion in India’s state with the most congested courts reduces

aggregate productivity in the state by about 15% (16.2 log points) relative to the court congestion

in the state with the least congested courts.29 These dynamic losses from contracting frictions are

roughly three times as large as the losses arising from static distortions in the form of transaction

costs, estimated in the same context (Boehm and Oberfield, 2020).

No friction With friction

Mean income growth 0.015 0.015
Log real income difference 0.000 -0.162

Table X Aggregate Productivity

7 Conclusion

We present a model of firm dynamics where firms engage in vertical trading relationships. Firms

continually draw new suppliers along with match-specific productivities and choose to switch to a

new supplier when it is optimal to do so. The model generates moments that match the stylized

empirical facts from the firm dynamics literature: firm volatility and exit probabilities decline

with size, and growth rates exhibit fat tails. We apply the model to the study of contracting

frictions in developing countries. Using data from India and Pakistan we show that when firms

face contracting frictions with their suppliers they engage in long-term relationships, which in turn

reduces firm volatility and the degree of mean reversion in size, and makes the tails of the firm

size distribution thinner. We confirm these predictions in the model, and calibrate the model to

match the data moments. Our model predicts that the dynamic cost of contract enforcement is

large: moving from a location with the best observed contract enforcement to one with the worst

observed contract enforcement entails a 15% reduction in aggregate productivity.

29Two notes: the magnitude of the loss in aggregate productivity scales one-for-one with 1/β, and our calibration
of β is based on Baqaee et al. (2023). Second, in the counterfactuals, we do not adjust the measure of firms that are
created.
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A Data

A.1 Pakistani Court Data

Our measure of court congestion is, similarly to India, the average age of pending civil cases,

which we construct from the 2011, 2020, and 2021 years of the “Judicial Statistics of Pakistan”

reports (National Judicial Policy Making Committee, 2021). In contrast to India, we construct this

from cases in district courts due to the lower number of provinces (the most closely corresponding

administrative unit to Indian states in Pakistan). We also have no indication that parties are

able to bypass district courts in Pakistan. We have data, on the aggregate provincial level, for

Sindh, Khyber-Pakhtunkhwa, Balochistan, and Islamabad (ICT), and at the district level for the

37 districts of the Punjab. For Balochistan we use data from the 2021 Judicial Statistics of Pakistan

because the 2020 numbers are incoherent.

The raw data contains the number of civil cases pending at the end of 2020 that were instituted

in each year, between 2010 and 2020, and before 2010. From that we calculate the average age of

pending cases, assuming that (i) institution of cases is uniformly distributed within the year; (ii)

cases instituted up to the end of 2010 are, on average, 11.5 years old.

A.2 Pakistani VAT data

B Robustness and Further Results

B.1 Robustness of the size-volatility relationship

Tables XI replicates the analysis of the size-volatility relationship in the main text (Table II),

but uses ((yt+1 − yt)/0.5(yt+1 + yt)) to measure growth rather than ∆ log Salest+1. This measure,

popularized by Davis, Haltiwanger and Schuh (1998), incorporates observations in which a firm

exits.

B.2 Exit Rates

Having very few customers is a strong predictor of exit. Figure 11 shows exit rate among firms

with a given number of customers. Number of customers is a clear predictor of exit.

Table XII shows regressions of exit rates on combinations of fixed effects for number of buyers

and fixed effects for sales ventiles. Number of buyers and sales have similar predictive power, as

measured by R2 (9% and 10%). Further, after including the number of customers, the additional

predictive power from number of buyers is small, with R2 rising from 9% to 11%.

The first column of Table XIII repeats these regressions on model generated data. Number of

buyers is a good predictor of exit, although sales is not. That said, the final row shows that number

of buyers is not a sufficient statistic; conditional on the number of buyers, sales helps predict exit,

raising the R2 marginally. The second column shows that when focusing on non-retail buyers, the
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Data Simulation

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

log(Sales) -0.119 -0.0644 -0.0832 -0.0816 -0.1854 -0.108 -0.1027 -0.1027
(0.0015) (0.002) (0.0017) (0.0018) (0.0005) (0.0007) (0.0006) (0.0006)

log(Buyers) -0.205 -0.132 -0.3865 -0.2464
(0.0025) (0.0033) (0.0011) (0.0014)

log(HHI) 0.163 0.209 0.3571 0.3703
(0.0044) (0.0053) (0.0013) (0.009)

log(HHI (weighted)) -0.0495 -0.0133
(0.0028) (0.009)

Fixed Effects
Industry Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Statistics
R2 0.27 0.286 0.315 0.308 0.311 0.733 0.736 0.7473 0.7637 0.7637
R2-within 0.202 0.219 0.251 0.244 0.247 0.1746 0.1838 0.2188 0.2695 0.2695
Observations 24,784 24,784 24,784 24,784 24,124 543,869 543,869 543,869 543,869 543,869

Standard errors in parentheses.

Table XI Determinants of firm growth volatility

additional explanatory of power of sales rises. This is consistent with the idea that a firm would

exit if its lone customer loses all of its customers, which is less likely to happen when its customer

is large and has many buyers.

Table XII Exit rates by number of customers and size bin: Data

Dependent variable: P(exit)

(1) (2) (3) (4)

Constant 0.0878∗∗ 0.0879∗∗ 0.0878∗∗ 0.0879∗∗

(0.00039) (0.00038) (0.00038) (0.00038)

Fixed Effects Year Year, #Buyers Year, Sales vingtiles Year, #Buyers, Sales vingtiles

R2 0.0293 0.0889 0.0976 0.112
Observations 501828 501431 501828 501431

Standard errors in parentheses, clustered at the industry-region level.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Note: Each column shows the results (notably the R2) of a regression of exit dummies on a set of fixed effects.

Table XIII Exit rates by number of customers and size bin: Model

Fixed effects R2

Year #Buyers Sales vingtile All buyers Non-retail buyers

1 ✓ 0.000 0.000
2 ✓ ✓ 0.112 0.044
3 ✓ ✓ 0.015 0.015
4 ✓ ✓ ✓ 0.116 0.055

Each column shows the results (notably the R2) of a regression of exit dummies on a set of fixed effects.
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Figure 11 Exit Rate by Number of Customers

Note: This figure shows the exit rate among firms with a given number of customers in the
Pakistan VAT data.

B.3 Age and Autocorrelation of Growth Rates

This section studies how the autocorrelation of growth rates varies with age in model-generated

data, following the specification of Coad, Daunfeldt and Halvarsson (2018):

Growthit ∼ log(Salesit) + Growthit−1 +Aget +Growthit−1 ×Aget

The first two columns follow Coad, Daunfeldt and Halvarsson (2018) in using a median a me-

dian regression, with fixed effects are implemented by changing the dependent variable to ĝit =

Growthit− α̂g(it), where α̂g(it) is the fixed effect from a standard linear fixed effects regression. The

third and fourth columns use OLS.

Bottazzi et al. (2011) and Coad, Daunfeldt and Halvarsson (2018) stress the importance of using

median regressions because of the fat tailed nature of firm growth rates, and the fact that OLS dis-

proportionately weights outliers. In the model, whether or not one focuses on outliers observations

is important. A firm that gets an especially large growth rate because it is small and gains a large

customer is especially likely to have a negative growth rate with a large magnitude if it loses that

same customer. These dynamics are especially likely for firms with few customers, a category that

disproportionately includes young firms. As a result, the OLS which disproportionately weights

outliers yields a positive coefficient on the interaction of age and lagged growth, whereas the me-

dian regression favored by the literature because it which downweights outliers yields a negative

coefficient.
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Median Mean

(1) (2) (3) (4)

Log sales -0.5388 -0.5386 -0.6263 -0.6263
(0.000) (0.000) (0.001) (0.001)

Lag growth 0.0105 0.0140 -0.0550 -0.0559
(0.000) (0.000) (0.000) (0.001)

Age -0.0005 -0.0005 0.0018 0.0018
(0.000) (0.000) (0.000) (0.000)

Lag growth × Age -0.0003 0.0001
(0.000) (0.000)

Fixed effects Industry Industry Industry Industry

Table XIV Age and autocorrelation of firm growth rates

B.4 Results from Indian regression in Pakistan

The following tables we replicate the results from the baseline regressions that were done using

data from India but with data from Pakistan. Note, in particular, the following key differences

between the ASI data in India, and the VAT data from Pakistan:

� The data from Pakistan are VAT data, and include only information on sales values and sales

relationships, but no data on primary factors (employment, wage bill, investment etc) or sales

by product. The unit of observation in the Pakistani data is the firm, which is identified by

its tax IDs (NTN and STRN), whereas the unit of observation in the Indian data is the plant.

� Industry codes in the Pakistani data are available at the 2-digit and 4-digit level, but are very

incomplete at the 4-digit level. We therefore use 2-digit industry codes.

� Geographic information in the Pakistani data comes from an address string, which is available

in 2011 and 2019. We use the geocoding from Balboni, Boehm and Waseem (2024) and prefer

2011 addresses over 2019, whenever available. We mostly use districts as our level of spatial

aggregation.

Table XV shows that mean reversion among firms that produce relationship-specific goods

weakens more with court congestion than mean reversion among firms that produce standardized

goods. Table XVI shows that the right tail of the size distribution among firms that produce

relationship-specific goods grows thinner with court congestion than the right tail among firms

that produce standardized goods.

B.5 Robustness checks for the baseline regressions on Indian data

B.5.1 Single Product Plants and Standalone Plants

The following tables show robustness checks for the baseline regressions that use Indian ASI data.

Table XIX shows results using only single-product plants; Table XX shows results using only plants

that have no sister plants belonging to the same firm (i.e. single-plant firms). Note that the latter

43



Dependent variable: Change in log Sales

(1) (2) (3)

log Salest−1 -0.146∗∗ -0.163∗∗ -0.163∗∗

(0.0051) (0.010) (0.011)

log Salest−1× Age civ. cases × relspec 0.0114+ 0.0128∗

(0.0060) (0.0062)

Firm × 2-digit Industry FE Yes Yes Yes
District FE Yes Yes
Year FE Yes Yes
Age FE Yes
Industry × District × Year FE Yes

R2 0.218 0.218 0.249
Observations 205351 205254 201931

Standard errors in parentheses, clustered at the district × industry level.

Table XV Mean Reversion: Pakistan

Dependent variable: Skewness of log Sales

(1) (2) (3)

Relspec x Court Congestion -0.914 -1.053+ -1.465+

(0.593) (0.562) (0.831)

District FE Yes Yes Yes
2-digit Industry FE Yes Yes Yes

Statistic 25-75 25-90 50-90

R2 0.424 0.598 0.547
Observations 935 688 688
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table XVI Firm Size Distribution: Pakistan

also constrains the data to the interval 2001–2010 since this information is only reliably available

for that time period.

B.5.2 State Characteristics

B.5.3 Industry Characteristics
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Dependent variable: σ(∆ log Sales)dω

(1) (2) (3) (4)

Avg age of civil cases × Rel. spec. -0.0254∗ -0.0258∗ -0.0446∗ -0.0439∗

(0.012) (0.012) (0.021) (0.020)

(∆ log Sales)dω -0.288∗∗ -0.288∗∗

(0.022) (0.022)

State FE Yes Yes Yes Yes
5-digit Industry FE Yes Yes Yes Yes

Estimator OLS OLS IV IV

R2 0.284 0.305 0.000332 0.0300
Observations 7028 7028 7028 7028

Regression at the state × industry level. Only state-industry cells with more than 3 observations used.

Table XVII Lower variance of sales growth when frictions are large: single-product plants only

Dependent variable: σ(∆ log Sales)dω

(1) (2) (3) (4)

Avg age of civil cases × Rel. spec. -0.00253 -0.00336 -0.0229 -0.0236
(0.012) (0.012) (0.021) (0.021)

(∆ log Sales)dω -0.160∗∗ -0.161∗∗

(0.026) (0.026)

State FE Yes Yes Yes Yes
5-digit Industry FE Yes Yes Yes Yes

Estimator OLS OLS IV IV

R2 0.304 0.311 -0.000736 0.00862
Observations 5002 5002 5002 5002

Regression at the state × industry level. Only state-industry cells with more than 3 observations used.

Table XVIII Lower variance of sales growth when frictions are large: single-plant firms only

Dependent variable: Change in log Sales

(1) (2) (3) (4) (5) (6)

log Salest−1 -0.428∗∗ -0.461∗∗ -0.546∗∗ -0.422∗∗ -0.488∗∗ -0.624∗∗

(0.013) (0.037) (0.062) (0.014) (0.042) (0.065)

log Salest−1× Age civ. cases × relspec 0.00447 0.0219+ 0.0182 0.00165 0.0339+ 0.0536+

(0.0043) (0.013) (0.020) (0.0051) (0.017) (0.029)

Plant × 5-digit Industry FE Yes Yes Yes Yes Yes Yes
State FE Yes Yes
Year × Previous Year FE Yes Yes
Age FE Yes Yes Yes Yes
Industry × District × Year FE Yes Yes
Industry × District ×(t, t− 1) FE Yes Yes

Method OLS OLS OLS IV IV IV

R2 0.481 0.629 0.655 0.268 0.248 0.260
Observations 110279 36767 24528 110279 36767 24528

Standard errors in parentheses, clustered at the state × industry level.

Table XIX Mean Reversion: Single-product plants only
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Dependent variable: Change in log Sales

(1) (2) (3) (4) (5) (6)

log Salest−1 -0.466∗∗ -0.515∗∗ -0.696∗∗ -0.468∗∗ -0.535∗∗ -0.742∗∗

(0.017) (0.034) (0.042) (0.019) (0.037) (0.039)

log Salest−1× Age civ. cases × relspec 0.0140∗ 0.0336∗∗ 0.0471∗∗ 0.0148∗ 0.0445∗∗ 0.0706∗∗

(0.0064) (0.013) (0.015) (0.0073) (0.017) (0.022)

Plant × 5-digit Industry FE Yes Yes Yes Yes Yes Yes
State FE Yes Yes
Year × Previous Year FE Yes Yes
Age FE Yes Yes Yes Yes
Industry × District × Year FE Yes Yes
Industry × District ×(t, t− 1) FE Yes Yes

Method OLS OLS OLS IV IV IV

R2 0.485 0.649 0.685 0.271 0.266 0.302
Observations 74248 29634 19030 74248 29634 19030

Standard errors in parentheses, clustered at the state × industry level.

Table XX Mean Reversion: Single-plant firms only

Dependent variable: σ(∆ log Sales)dω

(1) (2) (3) (4)

Avg age of civil cases × Rel. spec. -0.0226∗ -0.0239∗ -0.0502∗∗ -0.0513∗∗

(0.010) (0.010) (0.015) (0.015)

Log GDPC × Rel. Spec. 0.0147 0.0155 0.00355 0.00440
(0.017) (0.017) (0.018) (0.018)

Trust × Rel. Spec. 0.173+ 0.174+ 0.205∗ 0.206∗

(0.095) (0.094) (0.096) (0.095)

Language HHI × Rel. Spec. 0.0661 0.0593 0.0593 0.0526
(0.090) (0.090) (0.090) (0.090)

Caste HHI × Rel. Spec. -0.190 -0.199+ -0.226+ -0.234∗

(0.12) (0.12) (0.12) (0.12)

Corruption × Rel. Spec. -0.525+ -0.477 -0.612∗ -0.563+

(0.30) (0.30) (0.31) (0.30)

(∆ log Sales)dω -0.238∗∗ -0.239∗∗

(0.027) (0.027)

State FE Yes Yes Yes Yes
5-digit Industry FE Yes Yes Yes Yes

Estimator OLS OLS IV IV

R2 0.310 0.321 0.00157 0.0171
Observations 5909 5909 5909 5909

Regression at the state × industry level. Only state-industry cells with more than 5 observations used.

Table XXI Variance of sales growth: State characteristics robustness
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Dependent variable: Change in log Sales

(1) (2) (3) (4) (5) (6)

log Salest−1 -0.387∗∗ -0.425∗∗ -0.572∗∗ -0.388∗∗ -0.427∗∗ -0.575∗∗

(0.015) (0.033) (0.045) (0.015) (0.033) (0.045)

log Salest−1× Age civ. cases × relspec 0.0197∗∗ 0.0137 -0.0142 0.0503∗∗ 0.0641∗∗ 0.0899∗∗

(0.0067) (0.015) (0.027) (0.0094) (0.022) (0.034)

log Salest−1× Log GDPC × Rel. Spec. -0.0114∗ -0.00331 0.0132 -0.0162∗∗ -0.0150 -0.0115
(0.0055) (0.013) (0.021) (0.0060) (0.016) (0.027)

log Salest−1× Trust × Rel. Spec. 0.0324 0.119 0.150 -0.0270 0.0857 0.121
(0.068) (0.18) (0.30) (0.071) (0.19) (0.34)

log Salest−1× Language HHI × Rel. Spec. 0.0472 -0.0315 -0.0522 0.0130 -0.0436 -0.0633
(0.053) (0.12) (0.21) (0.056) (0.13) (0.27)

log Salest−1× Caste HHI × Rel. Spec. 0.132 0.304 -0.0914 0.167+ 0.359 -0.0190
(0.088) (0.20) (0.35) (0.096) (0.23) (0.41)

log Salest−1× Corruption × Rel. Spec. 0.426∗∗ 0.136 0.230 0.482∗∗ 0.212 0.291
(0.16) (0.28) (0.53) (0.17) (0.34) (0.64)

Plant × 5-digit Industry FE Yes Yes Yes Yes Yes Yes
State FE Yes Yes
Year × Previous Year FE Yes Yes
Age FE Yes Yes Yes Yes
Industry × District × Year FE Yes Yes
Industry × District ×(t, t− 1) FE Yes Yes

Method OLS OLS OLS IV IV IV

R2 0.446 0.628 0.660 0.250 0.247 0.270
Observations 159914 65943 43946 159914 65943 43946

Standard errors in parentheses, clustered at the state × industry level.

Table XXII Mean Reversion: State characteristics robustness
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Dependent variable: Skewness of log Sales

(1) (2) (3) (4) (5) (6)

Relspec x Court Congestion -0.415∗ -0.825∗∗ -0.894∗∗ -0.638∗ -1.020∗ -0.726
(0.185) (0.314) (0.325) (0.280) (0.476) (0.473)

Log GDPC × Rel. Spec. -0.449 -1.423∗ -0.984 -0.565 -1.524∗ -0.903
(0.351) (0.597) (0.674) (0.367) (0.625) (0.695)

Trust × Rel. Spec. -0.118 -3.063 -3.447 0.0153 -2.947 -3.571
(1.680) (2.859) (2.993) (1.686) (2.868) (3.005)

Language HHI × Rel. Spec. -0.985 -3.004 -2.652 -0.873 -2.906 -2.736
(1.268) (2.158) (2.338) (1.273) (2.166) (2.344)

Caste HHI × Rel. Spec. -3.594+ -3.276 -4.020 -3.841+ -3.490 -3.762
(1.971) (3.354) (3.696) (1.985) (3.378) (3.734)

R2 0.564 0.468 0.564 0.004 0.006 0.013
State FE Yes Yes Yes Yes Yes Yes
5-digit Industry FE Yes Yes Yes Yes Yes Yes

Estimator OLS OLS OLS IV IV IV

Statistic 25-75 50-75 50-90 25-75 50-75 50-90
Observations 2414 2414 1146 2414 2414 1146

Table XXIII Skewness of Firm Size Distribution: State characteristics robustness

Dependent variable: σ(∆ log Sales)dω

(1) (2) (3) (4)

Avg age of civil cases × Rel. spec. -0.0174+ -0.0182+ -0.0424∗ -0.0402∗

(0.0096) (0.0095) (0.018) (0.018)

Capital Intensity * Avg. age of cases -0.0611 -0.0553 -0.0772 -0.0694
(0.13) (0.13) (0.13) (0.13)

Ind. Wage Premium * Avg. age of cases 0.00704∗ 0.00708∗∗ 0.00748∗∗ 0.00746∗∗

(0.0028) (0.0027) (0.0028) (0.0028)

Ind. Contract Worker Share * Avg. age of cases 0.0629 0.0588 0.0591 0.0554
(0.061) (0.061) (0.062) (0.061)

Upstreamness * Avg. age of cases 0.00211 0.00237 -0.00200 -0.00125
(0.0049) (0.0048) (0.0055) (0.0054)

Tradability * Avg. age of cases -0.0000534 0.0000250 -0.000163 -0.0000718
(0.0013) (0.0012) (0.0013) (0.0012)

(∆ log Sales)dω -0.273∗∗ -0.273∗∗

(0.024) (0.024)

State FE Yes Yes Yes Yes
5-digit Industry FE Yes Yes Yes Yes

Estimator OLS OLS IV IV

R2 0.287 0.302 0.000749 0.0218
Observations 7562 7562 7562 7562

Regression at the state × industry level. Only state-industry cells with more than 5 observations used.

Table XXIV Variance of sales growth: Industry characteristics robustness

48



Dependent variable: Change in log Sales

(1) (2) (3) (4) (5) (6)

log Salest−1 -0.390∗∗ -0.374∗∗ -0.426∗∗ -0.388∗∗ -0.375∗∗ -0.435∗∗

(0.014) (0.029) (0.054) (0.015) (0.029) (0.053)

log Salest−1× Age civ. cases × relspec 0.00749+ 0.0302∗∗ 0.0332∗ 0.00621 0.0312∗∗ 0.0390∗

(0.0040) (0.0099) (0.014) (0.0044) (0.011) (0.016)

log Salest−1× Capital Intensity × Avg. age of cases 0.000958 -0.0881 -0.355 0.00223 -0.0868 -0.332
(0.059) (0.19) (0.28) (0.059) (0.19) (0.27)

log Salest−1× Ind. Wage Premium × Avg. age of cases 0.0000719 -0.00627 -0.00518 0.000171 -0.00640 -0.00593
(0.0011) (0.0040) (0.0061) (0.0011) (0.0041) (0.0060)

log Salest−1× Ind. Contract Worker Share × Avg. age 0.000125 0.0206 -0.00330 -0.000260 0.0208 -0.00557
(0.023) (0.036) (0.050) (0.023) (0.036) (0.049)

log Salest−1× Upstreamness × Avg. age of cases -0.000230 0.00104 0.00258 -0.000276 0.00112 0.00310
(0.00090) (0.0023) (0.0038) (0.00091) (0.0023) (0.0038)

log Salest−1× Tradability × Avg. age of cases -0.000671 -0.00121 -0.00309+ -0.000656 -0.00124 -0.00320+

(0.00052) (0.0013) (0.0018) (0.00052) (0.0013) (0.0018)

Plant × 5-digit Industry FE Yes Yes Yes Yes Yes Yes
State FE Yes Yes
Year × Previous Year FE Yes Yes
Age FE Yes Yes Yes Yes
Industry × District × Year FE Yes Yes
Industry × District ×(t, t− 1) FE Yes Yes

Method OLS OLS OLS IV IV IV

R2 0.457 0.635 0.668 0.257 0.251 0.281
Observations 203563 77828 51222 203563 77828 51222

Standard errors in parentheses, clustered at the state × industry level.

Table XXV Mean Reversion: Industry characteristics robustness
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Dependent variable: Skewness of log Sales

(1) (2) (3) (4) (5) (6)

Relspec x Court Congestion -0.356+ -0.682∗ -0.999∗∗ -0.674 -1.412∗ -1.124+

(0.183) (0.314) (0.320) (0.415) (0.711) (0.678)

Capital Intensity * Avg. age of cases 1.337 -1.581 -3.547 1.178 -1.943 -3.665
(2.818) (4.824) (5.435) (2.826) (4.840) (5.464)

Ind. Wage Premium * Avg. age of cases -0.0325 0.0232 0.118+ -0.0233 0.0442 0.122+

(0.0430) (0.0737) (0.0655) (0.0444) (0.0760) (0.0681)

Ind. Contract Worker Share * Avg. age of cases -0.112 -3.154 -1.051 -0.281 -3.541 -1.193
(1.307) (2.237) (2.759) (1.323) (2.265) (2.842)

Upstreamness * Avg. age of cases -0.0176 -0.0294 -0.153 -0.0702 -0.150 -0.169
(0.0916) (0.157) (0.149) (0.110) (0.189) (0.167)

Tradability * Avg. age of cases 0.00650 0.0942+ 0.0293 0.00388 0.0883+ 0.0284
(0.0310) (0.0530) (0.0608) (0.0311) (0.0533) (0.0610)

R2 0.540 0.436 0.556 0.001 0.002 0.011
State FE Yes Yes Yes Yes Yes Yes
5-digit Industry FE Yes Yes Yes Yes Yes Yes

Estimator OLS OLS OLS IV IV IV

Statistic 25-75 50-75 50-90 25-75 50-75 50-90
Observations 3008 3008 1448 3008 3008 1448

Table XXVI Skewness of Firm Size Distribution: Industry characteristics robustness
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C Numerical simulations

C.1 Calibration

C.1.1 Population growth

The employment share of young firms is greater with a high population growth rate. Hsieh and

Klenow (2014) give statistics on the employment share of plants by age in 2010-11 from the ASI

and NSS in Figure III. But they also show that cohort sizes are larger post 1997. They also include

a calculation for steady-state employment shares based on measured employment growth and exit

rates assuming that all cohorts are equally sized in Figure VI.

C.2 Input Output Tables

To facilitate the numerical simulation, we make some modifications to the input output tables so

that it is model consistent and more sparse. We first remove some links and industries.

We use the following notation: Expenditure between a buying and supplying industries, E(b, s),

is the total expenditure by single product plants in b on s. Production, P (ω) is the total ex-factory

value of produced goods. Final consumption, C(ω), is production less total ASI expenditure on the

product.

1. Only manufacturing products are included.

2. Important links: links that are unimportant for both supply and demand are removed to

increase sparsity.

� (Supply) For each purchasing industry b, let M be the set of supply industries. The

supply-important pairs (b, s) are those with s in the smallest set S ⊆M such that∑
s∈S

E(b, s) ≥ 0.99×
∑
s∈M

E(b, s)

Table XXVII Hsieh & Klenow employment shares

Age group Employment share (2010-11) Employment share (SS)

< 5 0.26 0.18
5− 9 0.22 0.15
10− 14 0.18 0.12
15− 19 0.10 0.10
20− 24 0.08 0.08
25− 29 0.05 0.06
30− 34 0.04 0.04
35− 39 0.02 0.04
≥ 40 0.05 0.23
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� (Demand) For each supplying industry s, let M be the set of purchasing industries. The

demand-important pairs (b, s) are those with b in the smallest set B ⊆M such that∑
b∈B

E(b, s) ≥ 0.99×
∑
b∈M

E(b, s)

� Expenditure on pairs which are neither supply-important nor demand-important is set

to zero.

3. Slow industries: For some industries, calculating the firms’ costs is very slow. These are

industries with either very high expenditure share on manufacturing inputs and more generally

those associated with large eigenvalues of the IO matrix.

� We remove industries with total expenditure on manufacturing outputs greater than

95% of the ex-factory value of production.

� We remove the industries associated with eigenvalues of the IO matrix above 0.5.

4. Industries with no suppliers: We remove industries which do not purchase inputs from

any included industries.

5. No path to final consumption: We remove any industries with zero direct final consump-

tion and zero (potentially indirect) customers with strictly positive final consumption.

Then given the remaining industries and buyer-supplier links, we reconstruct consistent IO

tables as follows:

� We assume any purchases from industries or through links that are not in our final sample

are spent on primary inputs.

� We assume any sales to industries or through links that are not in our sample are sales to

retailers.

� αb,s =
E(b,s)
P (b)

� αHω = max{0, C(ω)} (normalized to sum to 1 across industries)

� Given the IO matrix A, the fraction of firms in each industry ρω is set to equalize the average

value of output per firm across industries.

C.3 Simulation Procedure

We simulate the model using a discrete approximation using a finite number of firms.

In time step ∆, Given an arrival rate ϕ of techniques that dominate one’s current supplier,

At each point in time, we have recorded for each firm the identity of each supplier and the

match specific productivity. We compute each firm’s cost as a fixed point.
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If the time step is small enough, it is likely there is at most one new technique that dominates

the existing technique. Among all techniques that arrive, the identity of the supplier is random.

However, among techniques that are larger than any threshold, suppliers that have a low cost are

over-represented. In particular, among techniques that beat the current supplier, the probability

that it comes from supplier j is

c−βj∑
j̃∈Jω̂ c

−β
j̃

(7)

Thus we assume that in each time step, a new, better supplier arrives with probability ∆ϕ, and

if it does arrive, the reduction in cost x is drawn from a Pareto with shape parameter β and the

identity of the supplier is randomly drawn according to (7).

In practice, we use a time step ∆ of one year. Our simulations are insensitive to varying the

length of the time step.

We simulate the model for 150 years. We discard the first 100 years, as by this time the

model has converged sufficiently to its balanced growth path, and the statistics we compute have

stabilized. We then use the remaining 50 years to collect outcomes.

D Proofs

D.1 Static Equilibrium

We derive results here for the static equilibrium of the full multi-industry model. The simple model

is just a special case.

D.1.1 Necessary Conditions for Pairwise Stability

Claim 1 Fix a feasible contracting arrangement. The cost-minimizing choice of labor for firm b

industry ω satisfies

wlb = αωlcbyb (8)

and its marginal cost is

cb = w

(
yb

Aω
∏
ω̂

(
zb,s(b,ω̂)xb,s(b,ω̂)

)αωω̂
)1/αωl

1

αωl

1

yb
(9)

For any retailer, pr =
ε
ε−1cr. and profit cannot be negative for any firm, πj ≥ 0, ∀j.

Proof. Given the contracting arrangement, if yb = 0 (because either b is a producing firm and the

contracting arrangement dictates yb = 0, or because b is a retailer and b finds it optimal to choose

yb = 0), then it is optimal for b to choose lb = 0.

Suppose instead that yωb > 0. Since the contracting arrangement is feasible, it must be that

each xω,s(b,ω̂) > 0. Given the contracting arrangement, firm b’s cost minimization problem is to
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minimize labor subject to its production function. Firm b’s total cost (including transfers to its

suppliers) is

Cb(y) = min
lb
wlb +

∑
ω̂

Tb,s(b,ω̂)

subject to

y ≤ Aωl
αωl
b

∏
ω̂

(
zb,s(b,ω̂)xb,s(b,ω̂)

)αωω̂
Eliminating lb gives

Cb(y) = w

(
y

Aω
∏
ω̂

(
zb,s(b,ω̂)xb,s(b,ω̂)

)αωω̂
)1/αωl

+
∑
ω̂

Tb,s(b,ω̂)

Marginal cost is then

cb = C ′
b(y) = w

(
y

Aω
∏
ω̂

(
zb,s(b,ω̂)xb,s(b,ω̂)

)αωω̂
)1/αωl

1

αωl

1

y

This can be rearranged as

αωlcbyb = w

(
yb

Aω
∏
ω̂

(
zb,s(b,ω̂)xbs(b,ω̂)

)αωω̂
)1/αωl

= wlb

Retailer r’s choice of price satisfies

max
pr,yr

pryr − Cr(yr) subject to yr ≤ Y P εp−εr

The first order conditions imply pr =
ε
ε−1C

′
r(yr) =

ε
ε−1cr.

Finally, if πj < 0, then j could improve its payoff by dropping all contracts.

Claim 2 In any pairwise equilibrium, for each buyer-supplier pair b and s in respective industries

ω and ω̂,

csxbs = αωω̂cbyb (10)

Proof.

Consider a feasible contracting arrangement. Given the contracting arrangement, let yb be the

output that b produces; if b is a firm, yb is determined directly by the arrangement, and if b is a

retailer, then yb is a choice. In any case, we will show that given the arrangement and, if b is a

retailer, the choice of yb, the the pair b and its supplier s can increase their bilateral surplus if (10)

does not hold.

First, suppose that yb = 0. Pairwise stability requires that xbs = 0, because otherwise the sup-

plier could conserve on labor. Suppose otherwise, i.e. that yb > 0. For the contracting arrangement
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to be feasible, it must be that all of the buyer’s suppliers and all of the supplier’s suppliers provide

strictly positive input quantities.

Consider the supplier of good ω̂, s. Let ys,−b denote the quantity that the supplier s must

provide to all customers aside from b. Thus the supplier’s total output is ys = xbs + yωs,−b. Given

the supplier’s production function, its expenditure on labor is

wls = w

(
xbs + ys,−b

Aω̂
∏
ω̃

[
zs,s(s,ω̃)xs,s(s,ω̃)

]αω̂ω̃
) 1

αω̂l

The sum of the expenditure on labor used by s and b is

w

(
xbs + ys,−b

Aω̂
∏
ω̃

[
zs,s(s,ω̃)xs,s(s,ω̃)

]αω̂ω̃
) 1

αω̂l

+ w

(
yb

Aω
∏
ω′
(
zb,s(b,ω′)xb,s(b,ω′)

)αωω′
) 1

αωl

This is convex in xbs, and the global minimum satisfies

w
1

αω̂l

1

xbs + ys,−b

(
xbs + ys,−b

Aω̂
∏
ω̃

[
zs,s(s,ω̃)xs,s(s,ω̃)

]αω̂ω̃
) 1

αω̂l

=
αωω̂
αωl

1

xbs
w

(
yb

Aω
∏
ω′
(
zb,s(b,ω′)xb,s(b,ω′)

)αωω′
) 1

αωl

using (9) for each firm gives

cs =
αωω̂
xbs

ybcb

Thus, unless the marginal costs satisfy this condition, there is a profitable deviation in which the

pair could make the same output using less labor. Transfers can then be adjusted so that both

firms are better off.

Claim 3 In any pairwise equilibrium,

cb = w1−αωl
∏
ω̂∈Ω

(
cs(b,ω̂)

zb,s(b,ω̂)

)αωω̂
Proof. This follows from (8) for b, (10) for b and each of its suppliers, and b’s production function.

For any buyer seller pair, define

τbs ≡ Tbs − csxbs .

A firm’s profit is

πj =
∑
b∈Bj

Tbj − wlj −
∑
ω̂

Tj,s(j,ω̂) (producer)

πj = pjyj − wlj −
∑
ω̂

Tj,s(j,ω̂) (retailer)
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Claim 4 In any pairwise stable equilibrium,

πj =
∑
b∈Bj

τbj −
∑
ω̂

τj,s(j,ω̂) (producer)

πj = (pj − cj)Y P
εp−εj −

∑
ω̂

τj,s(j,ω̂) (retailer)

Proof. For a producing firm, profit is

πj =
∑
b∈Bj

Tbj − wlj −
∑
ω̂

Tj,s(j,ω̂)

=
∑
b∈Bj

(τbj + cjxbj)− wlj −
∑
ω̂

(
τj,s(j,ω̂) + cs(j,ω̂)xjs(j,ω̂)

)
Using yj =

∑
b∈Bj xbj , wlj = αωlcjyj , and cs(j,ω̂)xj,s(j,ω̂) = αωω̂cjyj , this is

πj =
∑
b∈Bj

τbj −
∑
ω̂

τj,s(j,ω̂)

For a retailer, profit is

πj = pjyj − wlj −
∑
ω̂

Tj,s(j,ω̂)

= (pj − cj) yj + cjyj − wlj −
∑
ω̂

(
τj,s(j,ω̂) + cs(j,ω̂)xj,s(j,ω̂)

)
Using wlj = αωlcjyj and cs(j,ω̂)xj,s(j,ω̂) = αωω̂cjyj , this is

πj = (pj − cj) yj −
∑
ω̂

τj,s(j,ω̂)

D.1.2 Feasibility and a Supply Tree Representation

Consider firm j in industry ω. We first characterize j’s supply tree. It will be useful to visualize

this supply tree as a graph with firm j at the root. There is set of edges connecting j to each of

its suppliers, {s (j, ω̂)}ω̂, and for each of those suppliers, a set of edges connecting to each of the

suppliers’ suppliers, etc.

The structure of the supply tree is the same for all firms in the supply tree. For firms in ω, let

Ψω represent the set of nodes with representative element ψ.

In any supply tree, there is a partial ordering ≥ such that ψ ≥ ψ′ if ψ is weakly upstream from

ψ′ (that is, the path from the root to ψ contains the path from the root to ψ′).

Let ω (ω̂, ψ) be the industry of the firm at node ψ in the supply tree for a firm in industry ω̂.

Abusing notation, we also let ω(j) denote j’s industry.
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For a supply tree for a firm j in industry ω, there is a path from the root (firm j) to the

node at ψ. Each edge along the path from the root to the node has a buyer b and a supplier

s, and in particular an output elasticity αω(b),ω(s) of the buyer’s production function with repect

to the supplier’s input. Let σωψ be the product of those output elasticities along the path. For

completeness, we say that if ψ is the root of the tree then the product has no terms and we define

σωψ = 1.

Note that if since each production function has constant returns to scale, the sum of the output-

elasticities of labor across all nodes in a supply tree is one. That is, for firm j in industry ω,∑
ψ∈Ψω

σωψαω(j,ψ),l = 1

For firm j in industry ω, let z (j, ψ) be the match-specific productivity associated with using

the supplier at node ψ in the supply tree Ψω. We define qjω̂ to be the effective productivity the of

the supply tree that produces input ω̂ for the firm. If firm j uses supplier s for input ω̂, then

qjω̂ =
∏
ψ∈Ψω̂

z (s, ψ)σω̂ψ

Note that this implies the iterative definition (6) in the main text, that if j uses supplier s for input

ω̂, then

qjω̂ = zjs
∏
ω̃

qαω̂ω̃sω̃

We will now build toward defining a feasible allocation. Any allocation has a supply tree

representation. A supply tree representation is a decomposition of production of each firm into the

output used for each retailer’s supply tree that the firm is in. Formally, for each retailer r and

node in the retailer’s supply tree ψ ∈ Ψω(r), let y(r, ψ) be the output used by the firm at node ψ

in the eventual production of the retailer’s good, while l(r, ψ) and {xω̂ (r, ψ)}ω̂ are the labor and

intermediate inputs used by that firm toward the production of the retailer’s good. The supply tree

representation of the allocation is {y(r, ψ), l (r, ψ) , {xω̂(r, ψ)}ω̂}r∈R,ψ∈Ψω(r)
. We will also sometimes

use the alternative notation; if firm j is at node ψ in the supply tree for retailer r, then

yj(r) ≡ y(r, ψ)

lj(r) ≡ l(r, ψ)

xj,ω̂(r) ≡ xω̂(r, ψ)

The supply tree must satisfy several constraints. First, for any buyer supplier pair b and s where

the supplier is in industry ω̂,

xb,ω̂(r) = ys(r)

Second, for any firm j, the total inputs and output across supply trees cannot must equal the firms
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total inputs and outputs.

lj =
∑
r∈Rj

lj(r)

yj =
∑
r∈Rj

yj(r)

xj,s(j,ω̂) =
∑
r∈Rj

xb,ω̂(r)

Finally, outputs and inputs at each node must be consistent with the production function

yj(r) = Aωlj(r)
αωl
∏
ω̂

[
zj,s(j,ω̂)xj,ω̂(r)

]αωω̂
For an allocation to be feasible, it must be that for any node ψ in the supply chain

Aωlj(r)
αωl

∏
ψ̃∈Ψω(r)|ψ̃>ψ

[
z
(
r, ψ̃
)
Aω(r,ψ̃)l

(
r, ψ̃
)αω(r,ψ̃),l

]σψ,ψ̃ ≥ yj (r)

To be feasible, it must be that for any node ψ ∈ Ψω(r) in the

Aω(r,ψ)l(r, ψ)
αω(r,ψ),l

∏
ψ̃∈Ψω(r)|ψ̃>ψ

[
z
(
r, ψ̃
)
Aω(r,ψ̃)l

(
r, ψ̃
)αω(r,ψ̃),l

]σψ,ψ̃ ≤ y (r, ψ)

Lemma 1 Consider a pairwise stable arrangement and the associated supply tree representation.

For any firm j that is in node ψ of the supply tree of retailer r, and any node ψ̃ that is weakly

further upstream, it must be that

wl
(
r, ψ̃
)
= αω(r,ψ̃),lσψψ̃cjyj(r)

Proof. Given an arrangement, we can reformulate firm j’s in industry ω problem into choosing

how to allocate inputs for production for each supply tree that uses it. If the arrangement dictates

that firm j uses inputs
{
xj,s(j,ω̂)

}
ω̂
, then we can express j’s expenditure minimization problem as

choosing a quantity of labor and of each input in order to make output for each supply tree:

min
{lj(r),xj,ω̂(r)}r∈Rj

∑
r∈Rj

wlj (r)

subject to
∑

r∈Rj
xj,ω̂(r) ≤ xj,s(j,ω̂) for each input ω̂ and yj(r) ≤ Aωlj(r)

αωl
∏
ω̂

[
zj,s(j,ω̂)xj,ω̂(r)

]αωω̂
for each retailer r ∈ Rj . Letting ηj(r) be the multiplier on the production constraint for each buyer

and λjω̂ be the multiplier on the input supply constraint from each supplier, the result of this cost
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minimization problem is

wlj(r) = αωlηj(r)yj(r), ∀r ∈ Rj

λjω̂xj,ω̂(r) = αωω̂ηj(r)yj(r), ∀ω̂, r ∈ Rj

Summing each of these across retailers, using wlj = αωlcjyj from Claim 1, and using csxjs = αωω̂yjcj

from Claim 2 give and ηj(r) = cj and λjω̂ = cs(j,ω̂). As a result, we have

wlj(r) = αωlcjyj(r), ∀r ∈ Rj

cs(j,ω̂)xj,ω̂ (r) = αωω̂cjyj(r), ∀ω̂, r ∈ Rj

For any buyer supplier pair, b and s in respective industries ω and ω̂, xb,ω̂(r) = ys(r). Combining

these and (if necessary) iterating the latter two forward gives

wl
(
r, ψ̃
)
= αω(r,ψ̃),lσψψ̃cjyj(r)

Lemma 2 For any industry ω,

Aωα
αωl
ωl

∏
ω̂

 ∏
ψ∈Ψω̂

[
Aω(ω̂,ψ)

[
αωω̂σω̂ψαω(ω̂,ψ),l

]αω(ω̂,ψ),l
]σω̂ψαωω̂

= 1

Proof. First, using the definition of Aω, we can simplify the left hand side of the expression to get

Aωα
αωl
ωl

∏
ω̂

 ∏
ψ∈Ψω̂

[
Aω(ω̂,ψ)

[
αωω̂σω̂ψαω(ω̂,ψ),l

]αω(ω̂,ψ),l
]σω̂ψαωω̂

=
∏
ω̂

 ∏
ψ∈Ψω̂

A
σω̂ψ
ω(ω̂,ψ)

[
αω(ω̂,ψ),lσω̂ψ

]αω(ω̂,ψ),lσω̂ψ

αωω̂

Next, we will show that each term in the weighted product is 1. That is, for each input ω̂, we

will show that
∏
ψ∈Ψω̂ A

−σω̂ψ
ω(ω̂,ψ) =

∏
ψ∈Ψω̂

[
αω(ω̂,ψ),lσω̂ψ

]αω(ω̂,ψ),lσω̂ψ . To get this, we have from the

definition of Aω(ω̂,ψ),

∏
ψ∈Ψω̂

A
−σω̂ψ
ω(ω̂,ψ) =

∏
ψ∈Ψω̂

(
α
αω(ω̂,ψ),l

ω(ω̂,ψ),l

∏
ω̃

α
αω(ω̂,ψ),ω̃

ω(ω̂,ψ),ω̃

)σω̂ψ

=

 ∏
ψ∈Ψω̂

α
αω(ω̂,ψ),lσω̂ψ
ω(ω̂,ψ),l

 ∏
ψ∈Ψω̂

∏
ω̃

α
αω(ω̂,ψ),ω̃σω̂ψ
ω(ω̂,ψ),ω̃


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Using σω̂ψαω(ω̂,ψ),ω̃ =
∑

ψ̃∈Ψω̃ σω̂ψ̃αω(ω̂,ψ̃),l, the second term can be expressed as

∏
ψ∈Ψω̂

∏
ω̃

α
αω(ω̂,ψ),ω̃σω̂ψ
ω(ω̂,ψ),ω̃ =

∏
ψ∈Ψω̂

∏
ω̃

α

∑
ψ̃∈Ψω̃

σω̂ψ̃αω(ω̂,ψ̃),l

ω(ω̂,ψ),ω̃

=
∏
ψ∈Ψω̂

∏
ω̃

∏
ψ̃∈Ψω̃

α
σω̂ψ̃αω(ω̂,ψ̃),l

ω(ω̂,ψ),ω̃

=
∏
ψ̃∈Ψω

σ
σω̂ψ̃αω(ω̂,ψ̃),l

ω̂ψ̃

where the last line follows from switching the order of the products and the definition of σω̂ψ̃.

Together, these yield ∏
ψ∈Ψω̂

A
−σω̂ψ
ω(ω̂,ψ) =

∏
ψ∈Ψω̂

[
αω(ω̂,ψ),lσω̂ψ

]αω(ω̂,ψ),lσω̂ψ

Proposition 7 Consider a feasible, pairwise stable arrangement. For any firm j in industry ω

with yj > 0,
w

cj
≤
∏
ω̂

qαωω̂jω̂

Proof. If cj = ∞, then the conclusion is immediate. Otherwise, if the arrangement is feasible, then

there is a retailer r with supply tree Ψω(r) such that yr > 0 and such that j is at node ψ ∈ Ψω(r).

Feasibility implies

Aωl(r, ψ)
αωl

∏
ψ̃∈Ψω(r)|ψ̃>ψ

[
z
(
r, ψ̃
)
Aω(r,ψ̃)l

(
r, ψ̃
)αω(r,ψ̃),l

]σψ,ψ̃ ≥ yj(r)

Pairwise stability implies that for any node ψ̃ ≥ ψ

l
(
r, ψ̃
)
=
αω(r,ψ̃),lσψψ̃cjyj(r)

w

Eliminating l
(
r, ψ̃
)
from these equations yields

Aω

[
αωlcjyj(r)

w

]αωl ∏
ψ̃∈Ψω(r)|ψ̃>ψ

[
z
(
r, ψ̃
)
Aω(r,ψ̃)

[
αω(r,ψ̃),lσψψ̃cjyj(r)

w

]αω(r,ψ̃),l
]σψ,ψ̃

≥ yj(r)

Multiplying both sides by w
cjyj(r)

and using αωl +
∑

ψ̃∈Ψω(r)|ψ̃>ψ σψ,ψ̃αω(r,ψ̃),l = 1 gives

Aωα
αωl
ωl

∏
ψ̃∈Ψω(r)|ψ̃>ψ

[
z
(
r, ψ̃
)
Aω(r,ψ̃)

[
αω(r,ψ̃),lσψψ̃

]αω(r,ψ̃),l
]σψ,ψ̃ ≥ w

cj
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Next, note that for any r downstream of j,∏
ψ̃∈Ψω(r)|ψ̃>ψ

z
(
r, ψ̃
)σψ,ψ̃

=
∏
ω̂

qαωω̂jω̂

Lastly, we can rearrange the remaining terms on the right hand side and use lemma 2 to get

Aωα
αωl
ωl

∏
ψ̃∈Ψω(r)|ψ̃>ψ

[
Aω(r,ψ̃)

[
αω(r,ψ̃),lσψψ̃

]αω(r,ψ̃),l
]σψ,ψ̃

= Aωα
αωl
ωl

∏
ω̂

 ∏
ψ̃∈Ψω̂

[
Aω(ω̂,ψ̃)

[
αωω̂αω(ω̂,ψ̃),lσω̂ψ̃

]αω̃(ω̂,ψ̃),l]σω̂ψ̃αωω̂

= 1

Together, these last three expressions deliver
∏
ω̂ q

αωω̂
jω̂ ≥ w

cj
.

Claim 5 Let l̄ (r) =
∑

ψ∈ΨR l (ψ, r) be total labor used across the supply for r. For any pairwise

stable arrangement, wl̄ (r) = cryr

Proof. Lemma 1 gives for the retailers output gives

wl
(
r, ψ̃
)
= αω(r,ψ̃),lσRψ̃cryr

Summing over all nodes gives

wl̄ (r) =
∑
ψ∈ΨR

αω(r,ψ̃),lσRψ̃cryr

The conclusion follows from the fact that
∑

ψ∈ΨR αω(r,ψ̃),lσRψ̃ = 1.

Claim 6 For any pairwise stable arrangement,

Y = (1− η)L

(∫
r∈R

(cr
w

)1−ε
dr

) 1
ε−1

Proof. Starting with l̄ (r) = cr
w yr, total labor used in production is

(1− η)L =

∫
r∈R

l̄ (r) dr =

∫
r∈R

cryr
w

dr

Using the optimal price pr = ε
ε−1cr and demand yr = Y

(pr
P

)−ε
, we have cryr = ε−1

ε pryr =

ε−1
ε prY

(pr
P

)−ε
= ε−1

ε PY
(pr
P

)1−ε
. Using this along with P =

(∫
r∈R p

1−ε
r dr

) 1
1−ε gives

(1− η)L =

∫
r∈R

ε−1
ε PY

(pr
P

)1−ε
w

dr =
ε−1
ε PY

w
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Noting that ε−1
ε

P
w = ε−1

ε
(
∫
r∈R p1−εr dr)

1
1−ε

w =
(∫

r∈R
(
cr
w

)1−ε
dr
) 1

1−ε
, solving for Y gives

Y = (1− η)L

(∫
r∈R

(cr
w

)1−ε
dr

) 1
ε−1

D.1.3 Countable Stability

Lemma 3 In any countably stable equilibrium, then for any firm j such that yj > 0,

cj = w
∏
ω̂

q−αωω̂jω̂

Proof. Suppose not. cj > w
∏
ω̂ q

−αωω̂
jω̂ , then there is a dominating deviation by a coalition

comprised of all of the firms in j’s supply tree that can produce the same output using less total

labor, so that with transfers, all firms in the coalition would be better off.

Lemma 4 In any countably stable equilibrium, τbs ≥ 0.

Proof. Suppose that there is a buyer supplier pair in which τbs < 0. Then the coalition of the

supply tree for firm s has a dominating deviation in which s drops the buyer, and all firms in the

coalition scaling back production just enough so that all other obligations to other buyers are met.

The cost saving to the coalition would be csxbs, which is larger than Tbs.

Lemma 5 If πj ≥ 0 for all j, τbs ≥ 0 for all pairs, and cj = w
∏
ω̂ q

−αωω̂
jω̂ for all j, then no

countable coalition has a dominating deviation.

Proof. Consider any coalition. The coalition cannot reduce its total labor cost or increase any

retailer’s profit from the household by shifting quantities. If any supplier outside the coalition is

dropped, any supply tree that relied on that supplier would have to reduce output to zero, so the

deviation is either eliminate profit or is infeasible.

D.1.4 Bargaining Weights

We now characterize a set of equilibria indexed by Υ ∈ [0, 1], which can be interpreted as the

supplier’s bargaining power.

Claim 7 For any Υ ∈ [0, 1], there is a countably stable equilibrium in which

τj,s(j,ω̂) = Υαωω̂

∑
b∈Bj

τbj


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if j is a producer firm or

τj,s(j,ω̂) = Υαωω̂ (pj − cj) yj

if j is a retailer

Proof. In this case, τbs ≥ 0 for every buyer-supplier pair and each firm’s profit is weakly positive,

πj ≥ 0.

Claim 8 If Υ = 1, each firm in industry ω has a ratio of revenue to cost of ε
ε−αωl and a ratio of

revenue to labor of w
αωl

ε
ε−1

Proof. Retailer j’s revenue is pjyj . Since τj,s(j,ω̂) = αωω̂ ((pj − cj) yj) for each of its suppliers, its

total cost is

wlj +
∑
ω̂

Tj,s(j,ω̂) = wlj +
∑
ω̂

[
cs(j,ω̂)xj,s(j,ω̂) + τj,s(j,ω̂)

]
= αωlcjyj +

∑
ω̂

[αωω̂cjyj + αωω̂ (pj − cj) yj ]

= cjyj + (1− αωl) (pj − cj) yj

The retailer’s ratio of revenue to cost is then

pjyj
cjyj + (1− αωl) (pj − cj) yj

=
ε
ε−1cjyj

cjyj + (1− αωl)
(

ε
ε−1cj − cj

)
yj

=
ε
ε−1

1 + (1− αωl)
(

ε
ε−1 − 1

)
=

ε

(1− αωl) ε+ (ε− 1)αωl

=
ε

ε− αωl

To characterize transfers among producer firms we turn again to the supply tree representation.

For node ψ in the supply tree for j let τ b (j, ψ) be the transfor of surplus for the supply tree from

the firm at that node from its buyer. Similarly, let τω̂ (j, ψ) be the transfer of surplus from the firm

at that node to its supplier. With Υ = 1, this must satisfy τ

τω̂ (j, ψ) = αω(j,ψ),ω̂τ
b (j, ψ)

We now proceed by induction to show that for each producing firm, the ratio of revenue to
τj,b(r)
cjyj(r)

= 1
ε−1 . If firm j in industry ω̂ supplies the retailer directly, then the payment of surplus to

the supplier is

τj,b (r) = αRω̂yr (pr − cr) =
1

ε− 1
αω(j,ψ),ω̂yrcr
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Pairwise stability implies. cjyj (r) = αRω̂cryr. Together, these imply that

τj,b (r)

cjyj (r)
=

1
ε−1αRω̂yrcr

αRω̂cryr
=

1

ε− 1

Now consider firm any producer firm j in industry ω that uses supplier s for input ω̂. With Υ = 1,

the payment of surplus from j to s for the supply tree for r is τs,b (r) = αωω̂τj,b (r). Pairwise

stability implies cjyj (r) = αωω̂cjyj (r). Together these yield

τs,b (r)

csys (r)
=

αωω̂τj,b (r)

αωω̂cjyj (r)
=

τj,b (r)

cjyj (r)
=

1

ε− 1

Now, for producer firm j in industry ω is

Revenuej =
∑
r∈Rj

[τj,b (r) + cjxj (r)] =
∑
r∈Rj

[
1

ε− 1
cjxj (r) + cjxj (r)

]
=

ε

ε− 1
cjyj

lj =
αωlcjyj
w

Expenditurej = wlj +
∑
r∈Rj

∑
ω̂

[
τs(j,ω̂),b (r) + cs(j,ω̂)xs(j,ω̂) (r)

]
= wlj +

∑
r∈Rj

∑
ω̂

[
1

ε− 1
cs(j,ω̂)xs(j,ω̂) (r) + cs(j,ω̂)xs(j,ω̂) (r)

]
= αωlcjyj +

∑
ω̂

ε

ε− 1
αωω̂cjyj

=

(
αωl + (1− αωl)

ε

ε− 1

)
cjyj

As a result, the ratio of revenue to cost is

Revenuej
Expenditurej

=
ε
ε−1cjyj(

αωl + (1− αωl)
ε
ε−1

)
cjyj

=
ε

ε− αωl

while the ratio of revenue to labor is

Revenuej
lj

=
ε
ε−1cjyj
αωlcjyj

w

=
w

αωl

ε

ε− 1

D.2 Dynamics in the Simple Model

First, we define the infinitesimal generator of the process. Let m(x) ≡ Mt(x, 0), where Mt is the

partial derivative of M with respect to its second argument.
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Lemma 6

m(x) = −ϕ
∞∑
k=1

x−βα
−k

Proof. (Heuristic)

For a short enough time period t, there are two ways that a firm’s cost can fall by a factor

larger tan x: either the firm finds a new supplier that delivers a jump in effective cost larger than

x1/α, or the existing supplier’s efficiency improves by more than x1/α (the full proof shows that the

probability of some mixture of the two events is negligible).

M(x, t) =
{
M
(
x1/α, t

)}{
e−tϕ

∫∞
x1/α

βb−β−1db
}

= M
(
x1/α, t

)
e−tϕx

−β/α

Differentiating and evaluating at t = 0

Mt(x, 0) =
d

dt

{
M
(
x1/α, t

)
e−tϕx

−β/α
}∣∣∣∣
t=0

= Mt

(
x1/α, t

)
e−tϕx

−β/α − ϕx−β/αM
(
x1/α, t

)
e−tϕx

−β/α
∣∣∣
t=0

= Mt

(
x1/α, 0

)
− ϕx−β/α

where the last line used M
(
x1/α, 0

)
= 1.

Next, using the fact that limx→∞Mt(x, 0) = 0, we can compute M recursively:

m(x) = −ϕx−β/α +m
(
x1/α

)
= −ϕx−β/α − ϕx−β/α

2
+m

(
x1/α

2
)

= −
K∑
k=1

ϕx−βα
−k

+m
(
xα

−K
)

→ −ϕ
∞∑
k=1

x−βα
−k

Proof. (Full)

What is the probability that a firm’s efficiency increase by weakly less than the proportion x in an

interval of length t? This could happen either the firm does not find a new supplier and the existing

supplier improves by no more than x1/α, an even which occurs with probability e−ϕtM
(
x1/α, t

)
, or

if there is a jump with increment z at some time τ ∈ [0, t], which occurs with density βz−β−1ϕe−ϕτ ,

that the new supplier improved by y between τ and t, and that the initial existing supplier improved
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by less than x1/α

yz between 0 and τ . Thus

M(x, t) = e−ϕtM
(
x1/α, t

)
+

∫ t

0
ϕe−ϕτ

∫ x1/α

1

∫ x1/α

y

1
M

(
x1/α

yz
, τ

)
βz−β−1Mx (y, t− τ) dzdydτ

Taking the derivative with respect to t gives

Mt(x, t) = −ϕe−ϕtM
(
x1/α, t

)
+ e−ϕtMt

(
x1/α, t

)
+ϕe−ϕt

∫ x1/α

1

∫ x1/α

y

1
M

(
x1/α

yz
, t

)
βz−β−1Mx(y, 0)dzdy

+

∫ t

0
ϕe−ϕτ

∫ x1/α

1

∫ x1/α

y

1
M

(
x1/α

yz
, τ

)
βz−β−1Mxt(y, t− τ)dzdydτ

Evaluating this at t = 0 and gives

Mt(x, 0) = −ϕM
(
x1/α, 0

)
+Mt

(
x1/α, 0

)
+ ϕ

∫ x1/α

1

∫ x1/α

y

1
M

(
x1/α

yz
, 0

)
βz−β−1Mx (y, 0) dzdy

Using the fact that M (x, 0) = 1, ∀x ≥ 1 and that Mx (y, 0) is the Dirac delta function at y = 1,

this is

Mt(x, 0) = −ϕ+Mt

(
x1/α, 0

)
+ ϕ

∫ x1/α

1

1−(x1/α
y

)−β
Mx (y, 0) dy

= −ϕ+Mt

(
x1/α, 0

)
+ ϕ

(
1− x−β/α

)
= Mt

(
x1/α, 0

)
− ϕx−β/α

Next, using the fact that limx→∞Mt(x, 0) = 0, we can compute M recursively:

m(x) = −ϕx−β/α +m
(
x1/α

)
= −ϕx−β/α − ϕx−

β

α2 +m
(
x

1
α2

)
= −

K∑
k=1

ϕx−βα
−k

+m
(
xα

−K
)

→ −ϕ
∞∑
k=1

x−βα
−k

To get at the distribution of efficiency growth we define φ (s, t) to be the Mellin transform of

M (x, t), i.e., φ (s, t) ≡
∫∞
1 x−sMx (x, t) dx.
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Claim 9 φ(s, t) = e
−ϕt

∑∞
k=1

s

βα−k+s

Proof. We first derive an expression for the time derivative of the Mellin transform at t = 0. To

do this, we first integrate by parts

φ (s, t) =

∫ ∞

1
x−sMx (x, t) dx = M (x, t)x−s

∣∣∞
1

+

∫ ∞

1
sx−s−1M (x, t) dx

=

∫ ∞

1
sx−s−1M (x, t) dx

we then differentiate with respect to time and evaluate at t = 0

φt(s, 0) =

∫ ∞

1
sx−s−1Mt(x, 0)dx

=

∫ ∞

1
sx−s−1

[
−ϕ

∞∑
k=1

x−βα
−k

]
dx

= −ϕ
∞∑
k=1

s

βα−k + s

Finally, we use the fact the Mellin transform of a product of independent random variables is the

product of their transforms. Therefore

logφ(s, t) = lim
n→∞

n logφ

(
s,
t

n

)
= t lim

n→∞

n

t
logφ

(
s,
t

n

)
= t lim

∆→0

logφ (s,∆)

∆
= tφt (s, 0)

= t

[
−ϕ

∞∑
k=1

s

βα−k + s

]

Exponentiating both sides gives the result.

Claim 10 Let Xj(t) the random variable corresponding to firm j’s proportional cost reduction in a

period of length t. As t grows large,
logXj(t)− α

1−α
ϕ
β
t√

2 α2

1−α2
ϕ

β2
t

converges in distribution to a standard normal

random variable.

Proof. This is just the central limit theorem. Let µ ≡ α
1−α

ϕ
β and v ≡ α2

1−α2
2ϕ
β2 , and let yj (t) =
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logXj(t)−µt√
vt

. Using the Mellin transform of Xj (t), the Laplace transform of y is

E
[
e−yj(t)s

]
= E

[
exp

{
−
[
logXj (t)− µt√

vt

]
s

}]
=

∫
exp

{
−
[
log x− µt√

vt

]
s

}
Mx (x, t) dx

= e
µt s√

vt

∫
x
− s√

vtMx (x, t) dx

= e
µt s√

vtφ

(
s√
vt
, t

)
= exp

{
s√
vt
µt− ϕt

∞∑
k=1

s/
√
vt

βα−k + s/
√
vt

}

Using µ = α
1−α

ϕ
β = ϕ

∑∞
k=1

1
βα−k , this is

E
[
e−yj(t)s

]
= exp

{
s√
vt
ϕt

∞∑
k=1

1

βα−k − ϕt

∞∑
k=1

s/
√
vt

βα−k + s/
√
vt

}

= exp

{
s√
vt
ϕt

∞∑
k=1

(
1

βα−k − 1

βα−k + s/
√
vt

)}

= exp

{
s√
vt
ϕt

∞∑
k=1

s/
√
vt

βα−k
(
βα−k + s/

√
vt
)}

= exp

{
s2
ϕ

v

∞∑
k=1

1

βα−k
(
βα−k + s/

√
vt
)}

In the limit as t grows large is

lim
t→∞

(
ϕ

v

∞∑
k=1

1(
βα−k + s/

√
vt
)
βα−k

)
=
ϕ

v

∞∑
k=1

1

βα−kβα−k =
1

2

so that

lim
t→∞

E
[
e−yj(t)s

]
= e−

s2

2

which is the Laplace transform of a standard normal.

Let γ be the growth rate of the measure of entrants. Let F (c) be the fraction of firms with

cost no greater than c. Suppose that the distribution of cost among new firms has CDF F0. Let

φF and φF0 be the respective Mellin transforms.

Claim 11 The Mellin transform of cost among entrants is

φF0 (s) = κ
α
β
s

0 φF (β)
α
β
s
Γ

(
1− α

β
s

)
Proof. A new entrant gets many initial draws of techniques. For each technique, the supplier and
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the match-specific productivity is random. The number of draws of techniques with match-specific

component larger than z is κ0z
−β. Given z, the probability that the supplier’s cost is low enough

to deliver a cost lower than c is Pr
((

cs
zbs

)α
≤ c|z

)
= Pr

(
cs ≤ zc1/α|z

)
= F

(
zc1/α

)
. As a result,

the arrival rate of a draw that delivers effective cost smaller than c is κ0
∫∞
0 F

(
zc1/α

)
βz−β−1dz.

1− F 0 (c) is the probability that no such draw arrives, which is thus

1− F 0 (c) = exp

{
−κ0

∫ ∞

0
F
(
zc1/α

)
βz−β−1dz

}
= exp

{
−κ0cβ/α

∫ ∞

0
F (u)βu−β−1du

}
using the change of variables u = zc1/α. Since

∫∞
0 F (u)βu−β−1du =

∫∞
0 u−βdF (u) = φF (β), this

is

F 0 (c) = 1− exp
{
−κ0φF (β) cβ/α

}
The Mellin transform of initial cost is then

φF0 (s) ≡
∫ ∞

0
c−sdF 0 (c)

=

∫ ∞

0
c−s

β

α
κ0φ

F (β) c
β
α
−1e−κ0φ

F (β)( cw )
β
α
dc

= κ
α
β
s

0 φF (β)
α
β
s
∫ ∞

0
u
−α
β
s
e−udu

Claim 12 The Mellin transform of F is

φF (s) =
1

1 + ϕ
γ

∑∞
k=1

s
s−βα−k

φF0 (s)

Proof. For a firm of age τ , Each firms cost is the ratio of the cost they were born, cj0, with and

the proportional decline in cost since birth, xj , cjt =
cj0
xj

. Since these are independent, the Mellin

transform of current cost among firms at age τ is

φFτ (s) = E
[
c−sjt

]
= E

[
c−sj0 x

s
0

]
= E

[
c−sj0

]
E [xs0] = φF0 (s)φM (−s, τ)

The Mellin transform of F is

φF (s) =

∫ ∞

0
γe−γτφFτ (s, τ) dτ =

∫ ∞

0
γe−γτφF0 (s)φM (−s, τ) dτ = φF0 (s)

∫ ∞

0
γe−γτφM (−s, τ) dτ
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Using the functional form for φM gives

φF (s) = φF0 (s)

∫ ∞

0
γe−γτe

−ϕτ
∑∞
k=1

(−s)
βα−k+(−s)dτ

= φF0 (s)
γ

γ + ϕ
∑∞

k=1
s

s−βα−k

Claim 13 Let ν be the unique solution to γ
ϕ =

∑∞
k=1

ν
βα−k−ν . The distribution of cost in the

cross-section decays has a power law left tail with exponent ν:

lim
c→0

logF (c)

log c
= ν

Proof. First, note that φF0 (s) is finite for all s < β
α . We next show that γ

ϕ =
∑∞

k=1
ν

βα−k−ν has

a unique solution.
∑∞

k=1
αk

β
v
−αk

is continuous and strictly increasing in ν ∈ [0, βα), taking the value

of 0 for ν = 0, diverging for ν ≥ β
α , and negative for ν < 0. There is therefore a unique value of ν

such that
∑∞

k=1
αk

β
ν
−αk

= γ
ϕ .

Next, the Mellin transform of the inverse of cost in the cross-section is φF (−s). Thus this is

also the Laplace transform of y = − log c. Let H be the CDF of y, and let φH be its Laplace

transform, so that φH (s) = φF (−s). To characterize the tail behavior of of y, we use Theorem 3

of Nakagawa (2007) which states that if −ν is the abcissa of convergence30 of the Laplace transform

and a pole, then

lim
y→∞

log (1−H (y))

y
= −ν (11)

. Note that ν is such that ϕ
γ

∑∞
k=1

αk
β
ν
−αk

= 1, and is (−s) ≷ v implies ϕ
γ

∑∞
k=1

αk
β

(−s)−αk
≷ 1.

Therefore if s > −ν, φH (s) =
φ0
F (−s)

1−ϕ
γ

∑∞
k=1

αk

β
(−s)−α

k

is finite because the denominator is positive and

φF0 (−s) is finite. But φH (s) is negative (i.e., diverges) when s < −ν. Further, s = −ν is a pole.

Therefore we have the conclusion that (11) holds. We can use this along with 1−H (y) = F (e−y)

to get the left tail behavior of the distribution of cost:

lim
c→0

logF (c)

log c
= − lim

y→∞

logF (e−y)

y
= − lim

y→∞

log 1−H (y)

y
= ν

Claim 14 The Mellin transform of the cross-sectional distribution of cost is

φF (s) =
Γ
(
1− α

β s
)

1 + ϕ
γ

∑∞
k=1

s
s−βα−k

[
κ0Γ (1− α)

1 + ϕ
γ

∑∞
k=1

1
1−α−k

] α
1−α

s
β

30An Abcissa of convergence of a Laplace transform L (s) is a negative number σ0 < 0 such that L (s) diverges for
s < σ0 and converges for s > σ0.
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Proof. Evaluating the Mellin transforms of F and F 0 at β gives

φF (β) =
1

1 + ϕ
γ

∑∞
k=1

1
1−α−k

φF0 (β)

φF0 (β) = κα0φ
F (β)αΓ(1− α)

combining these yields

φF (β) =

[
κα0Γ (1− α)

1 + ϕ
γ

∑∞
k=1

1
1−α−k

] 1
1−α

As a result, φF0 (s) is

φF0 (s) =

[
κ0Γ (1− α)

1 + ϕ
γ

∑∞
k=1

1
1−α−k

] α
1−α

s
β

Γ

(
1− α

β
s

)

Pluggin this into the expression for φF (s) gives the result.

In the case where ε− 1 = β, aggregate productivity is

[
Jtφ

F (ε− 1)
] 1
ε−1 =

[
Jtφ

F (β)
] 1
β = J

1
β

t

[
κα0Γ (1− α)

1 + ϕ
γ

∑∞
k=1

1
1−α−k

] 1
1−α

1
β

D.3 Full Model

For any firm in ω, let Mω(x, t) be the probability that the firms cost declines by a proportion less

than x. For a firm that uses industry ω as an input, let Kω(x) be the probability that the firm’s

effective cost of using input ω declines by a factor less than x.

Suppose that new suppliers that deliver a proportional declines in cost larger than b arrive at

rate ϕωb
−β. What does this imply for the efficiency and aggregate productivity?

Let Mω(x, t) be the probability that a firm producing product ω experiences a proportional

decline in cost that is weakly less than x over an interval of length t.

Let Kω(x, t) be the probability that a firm’s effective cost of using industry ω declines by a

factor weakly less than x over an interval of length t.

Define mω(x) ≡ limt→0
∂Mω(x,t)

∂t and kω(x) = limt→0
∂Kω(x,t)

∂t

Claim 15 mω and kω satisfy

kω (x) = mω (x)− ϕωx
−βω

Proof. (Heuristic) A firm’s effective cost of an input falls if its supplier’s cost declines or if it

switches to a different supplier. For a short enough time period t, there are two events that can

happen to reduce a firm’s effective cost of input ω by more than a factor x: either the firm finds

a new supplier that delivers a jump in efficiency larger than x, or the existing supplier’s unit cost

declines by a factor of x (the full proof shows that the probability of some mixture of the two events
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is negligible). Kω(x, t) is the probability that neither even happens:

Kω(x, t) = Mω(x, t)
{
e−tϕω

∫∞
x βb−β−1db

}
= Mω(x, t)e

−tϕωx−β

Differentiating with respect to t gives

∂Kω(x, t)

∂t
=
∂Mω(x, t)

∂t
e−tϕωx

−β − ϕωx
−βKω(x, t)e

−tϕωx−β

taking the limit as t→ 0 gives

kω(x) = mω(x)− ϕωx
−β

Proof. (Full) What is the probability that a firm’s effective cost of ω declines by weakly less than

the proportion x in an interval of length t? This could happen if either the firm does not find a

new supplier and the existing supplier’s cost falls by a factor weakly smaller than x, an event which

occurs with probability e−ϕωtMω(x, t), or if the firm finds a new supplier that delivers a decline in

cost with increment x1 at some time τ ∈ [0, t], which occurs with density e−ϕωτϕωβx
−β−1
1 , before

which the original supplier’s cost falls by a factor x0, and after which effective cost improves by x2,

and x0x1x2 ≤ x. Thus

Kω(x, t) = e−ϕωtMω(x, t)+

∫ t

0
ϕωe

−ϕωτ
∫ x

1

{∫ x/x1

1

[
Kω

(
x

x0x1
, t− τ

)]
Mω(dx0, τ)

}
βx−β−1

1 dx1dτ

Taking the derivative with respect to t gives

∂Kω(x, t)

∂t
= −ϕe−ϕωtMω(x, t) + e−ϕωt

∂Mω(x, t)

∂t

+ϕωe
−ϕωt

∫ x

1

{∫ x/x1

1

[
Kω

(
x

x0x1
, 0

)]
Mω(dx0, t)

}
βx−β−1

1 dx1

+

∫ t

0

d

dt

{
ϕωe

−ϕωτ
∫ x

1

{∫ x/x1

1

[
Kω

(
x

x0x1
, t− τ

)]
Mω(dx0, t)

}
βx−β−1

1 dx1

}
dτ

Note thatM(x, 0) = K(x, 0) = 1, ∀x ≥ 1. One implication is that the integral
∫ x/x1
1 Kω

(
x

x0x1
, 0
)
Mω(dx0, t) =

Mω

(
x
x1
, t
)
. Taking the the limit as t→ 0 gives

kω(x) = −ϕω +mω(x) + ϕω

∫ x

1
βx−β−1

1 dx1

= −ϕω +mω(x) + ϕω

[
−x−β + 1

]
= mω(x)− ϕx−β
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Let φMω (s, t) ≡
∫∞
1 x−sMω (dx, t) and φ

K
ω (s, t) ≡

∫∞
1 x−sKω (dx, t) be the Mellin transforms of

Mω (·, t) and Kω (·, t) respectively. Since the Mellin transform of the product of random variables

is the product of their respective transforms, these are related by

φKω̂ (s, t) =
∏
ω

φMω (αω̂ωs, t)

Similarly, define φmω (s) ≡ limt→0
φMω (s,t)−1

t and φkω (s) ≡ limt→0
φKω (s,t)−1

t .

Lemma 7 The Mellin transforms of satisfy φKω (s, t) = etφ
k
ω(s) and φMω (s, t) = etφ

m
ω (s). In addition,

φmω (s) =
∫∞
1 sx−s−1mω(x)dx and φkω(s) =

∫∞
1 sx−s−1kω(x)dx

Proof. We provide the proof for φMω ; the proof for φKω is identical. Integrating by parts, φMω can

be expressed as

φMω (s, t) =

∫ ∞

1
x−sMω(dx, t) = x−sMω(x, t)

∣∣∞
1

+

∫
sx−s−1Mω(x, t)dx

=

∫ ∞

1
sx−s−1Mω(x, t)dx

Next, taking limits and using L’Hospital’s rule, φmω and m are related to each other by

φmω (s) = lim
t→0

φMω (s, t)− 1

t
= lim

t→0

d

dt

[
φMω (s, t)

]
= lim

t→0

d

dt

[∫ ∞

1
sx−s−1Mω(x, t)dx

]
=

∫ ∞

1
sx−s−1mω(x)dx

To see that φMω (s, t) = etφ
m
ω (s), note that since the growth in each subperiod is independent, we

have

∂ logφMω (s, t)

∂t
=

1

φMω (s, t)

∂φMω (s, t)

∂t
=

1

φMω (s, t)
lim
∆→0

φMω (s, t+∆)− φMω (s, t)

∆

=
1

φMω (s, t)
lim
∆→0

φMω (s, t)φMω (s,∆)− φMω (s, t)

∆
= lim

∆→0

φMω (s,∆)− 1

∆
= φmω (s)

Liebniz rule then implies

logφMω (s, t) =

∫ t

0

d logφMω (s, τ)

dτ
dτ =

∫ t

0
φmω (s)dτ = tφmω (s) .

Claim 16 φkω and φmω satisfy the following two relationships

φmω̂ (s) =
∑
ω

φkω (αω̂ωs)

φkω(s) = φmω (s)−
ϕωs

β + s
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Proof. For the first relationship, we can use φMω̂ (s, t) =
∏
ω φ

K
ω (αω̂ωs, t) to express φmω̂ (s) as

φmω̂ (s) = lim
t→0

φMω̂ (s, t)− 1

t

= lim
t→0

∏
ω φ

K
ω (αω̂ωs, t)− 1

t

= lim
t→0

d

dt

{∏
ω

φKω (αω̂ωs, t)

}

= lim
t→0

φMω̂ (s, t)
∑
ω

∂ logφKω (αω̂ωs, t)

∂t

=
∑
ω

φkω (αω̂ωs)

where the last line used limt→0 φ
M
ω̂ (s, t) = 1 and limt→0

∂ logφKω (αω̂ωs,t)
∂t = φkω (αω̂ωs).

For the second relationship, we can use kω(x) = mω(x)− ϕωx
−β to express φkω(s) as

φkω(s) =

∫ ∞

1
sx−s−1kω(x)dx

=

∫ ∞

1
sx−s−1

[
mω(x)− ϕωx

−β
]
dx

= φmω (s)− ϕωs

∫ ∞

1
x−s−1x−βdx

= φmω (s)−
ϕωs

β + s

We next derive an explicit (rather than recursive) expression for these transforms

Claim 17 Let Jm(s) be the vector with representative element φmω̂ (s). Then

Jm(s) =

{ ∞∑
n=1

(−s/β)n (I − αn)
−1 αn

}
Φ

where αn is the Ω×Ω matrix with typical element (αn)ω̂ω = αnω̂ω and Φ is vector with elements ϕω.

Proof. We will do a Taylor expansion of φmω̂ (s) around s = 0. From above, we have that

φmω̂ (s) =
∑
ω

φmω (αω̂ωs)−
ϕωαω̂ωs

β + αω̂ωs

=
∑
ω

φmω (αω̂ωs)− ϕω +
ϕωβ

β + αω̂ωs

74



Noting that dn

dxn

(
1

β+αx

)
= (−α)nn! 1

(β+αx)n+1 the nth derivative of this equation (for n ≥ 1) is

φ
m(n)
ω̂ (s) =

∑
ω

αnω̂ωφ
m(n)
ω (αω̂ωs) + ϕωβ (−αω̂ω)n n!

1

(β + αω̂ωs)
n+1

or, evaluating at s = 0,

φ
m(n)
ω̂ (0) =

∑
ω

αnω̂ωφ
m(n)
ω (0) + ϕω

(
−αω̂ω

β

)n
n!

In vector form, this is

Jm(n)(s) = αnJ
m(n)(s) + αn(−β)−nΦn!

Jm(n)(s) = (−β)−n (I − αn)
−1 αnΦn!

Using φmω̂ (0) = 0, the Taylor expansion around s = 0 is

Jm(s) =
∞∑
n=0

snJm(n)(0)

n!

=

{ ∞∑
n=1

(−s/β)n (I − αn)
−1 αn

}
Φ

Claim 18 For firm j in industry ω, let Xj(t) the random variable corresponding to the firm’s

proportional cost reduction in a period of length t. As t grows large,
logXj(t)−µω√

vωt
converges in

distribution to a standard normal random variable, where µω ≡ −φm′
ω (0) and vω ≡ φm′′

ω (0) satisfy

µω =
∑
ω̂

αωω̂

(
µω̂ +

ϕω̂
β

)
vω =

∑
ω̂

α2
ωω̂

(
vω̂ +

ϕω̂
β2

)

Proof. Let Yj(t) =
logXj(t)−µωt√

vωt
. The Mellin transform of Xj (t) is E

[
Xj (t)

−s] = φMω (s, t) =

etφ
m
ω (s). The Laplace transform of Yj(t) is

E
[
e−Yj(t)s

]
= E

[
e
−
[
logXj(t)−µωt√

vωt

]
s
]
= e

µωt√
vωt

s
E
[
Xj(t)

− s√
vωt

]

Using E
[
Xj(t)

− s√
vωt

]
= φMω ( s√

vωt
) = expφmω

(
s√
vωt

)
, the Laplace transform of Yj(t) is then

E
[
e−Yj(t)s

]
= e

[
φmω

(
s√
vωt

)
+µω

s√
vωt

]
t
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We can take the limit of the exponent. Using µω = −φm′
ω (s), the change of variables u = 1√

vωt
,

using L’Hopital’s rule twice, and vω ≡ φm′′
ω (0), the exponent is:

lim
t→∞

t

[
φmω

(
s√
vωt

)
− φm′

ω (0)
s√
vωt

]
= lim

u→0

φmω (us)− φm′
ω (0)su

vωu2

= lim
u→0

sφm′
ω (us)− φm′

ω (0)s

vω2u

= lim
u→0

s2φm′′
ω (0)

vω2

=
s2

2

so that

lim
t→∞

E
[
e−yj(t)s

]
= e−

s2

2

which is the Laplace transform of a standard normal.

Finally, we derive expressions for µω and vω. Starting from the expression for φmω (s),

φmω (s) =
∑
ω̂

φmω̂ (αωω̂s)−
ϕωαωω̂s

β + αωω̂s

Differentiating once, evaluating at s = 0 and using µω = −φm′
ω (0) gives

µω =
∑
ω̂

αωω̂

(
µω̂ +

ϕω̂
β

)

Differentiating twice, evaluating at s = 0 and using vω = φm′′
ω (0) gives

vω =
∑
ω̂

α2
ωω̂

(
vω̂ +

ϕω̂
β2

)

We now study the distribution of cost in the cross section and among entrants. We assume

that when a firm in ω is born, the number of potential suppliers in industry ω̂ with match-specific

productivity larger than z is κ0,ωω̂z
−β.

Let Fω(c) be the cumulative distribution of cost among firms in ω. Let Fω,a be the cumulative

distribution of cost among firms of age a, so that Fω,0 is the distribution function among entrants.

Let φFω (c) =
∫
c−sdFω(c) and φ

F
ω,a(c) =

∫
c−sdFω,a(c) be their respective Mellin transforms.

Proposition 8 The Mellin transforms of the cross-sectional distribution of cost in ω and the dis-

tribution of cost among entrants in ω satisfy

φFω (s) =
γ

γ − φmω (−s)
φFω,0(s) (12)
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φFω,0(s) =
∏
ω̂

(
κ0ωω̂φ

F
ω̂ (β)

)αωω̂s/β Γ(1− αωω̂s

β

)
(13)

Proof. The cross-sectional distribution of cost satisfies

Fω(c) =

∫ ∞

0
γe−γaFω,a(c)da

so that

φFω (s) =

∫ ∞

0
γe−γaφFω,a(s)da

Since a firm’s cost is the product of its cost at birth and the change in cost between birth and age

a,

φFω,a(s) = φFω,0(s)φ
M
ω (−s, a) = φFω,0(s)e

φmω (−s)a

Putting these together gives

φFω (s) =

∫ ∞

0
γe−γaφFω,0(s)e

φmω (−s)ada =
γ

γ − φmω (−s)
φFω,0(s)

To get at the distribution of cost at birth, we assume that when a firm in ω is born, the number of

potential suppliers in industry ω̂ with match-specific productivity larger than z is κ0,ωω̂z
−β. As a

result, the arrival rate of a supplier of ω̂ that delivers effective cost lower than u is∫ ∞

0
Fω̂ (zu)κ0ωω̂βz

−β−1dz = κ0ωω̂u
β

∫ ∞

0
Fω̂ (a)βa

−β−1da = κ0ωω̂u
β

∫ ∞

0
a−βdFω̂(a) = κ0ωω̂u

βφFω̂ (β)

So the probability that an entrant’s effective cost of ω̂ is lower than u is 1 − e−κ0ωω̂u
βφFω̂ (β). The

Mellin transform of the effective cost of input ω̂ at birth is thus

E
[
u−s
]

=

∫ ∞

0
u−sκ0ωω̂βu

β−1φFω̂ (β)e
−κ0ωω̂uβφFω̂ (β)du

=
(
κ0ωω̂φ

F
ω̂ (β)

)s/β ∫ ∞

0
x−s/βe−xdx

=
(
κ0ωω̂φ

F
ω̂ (β)

)s/β
Γ

(
1− s

β

)
Since cost at birth is the weighted product of the effective cost of the inputs, and these are inde-

pendent,

φFω,0(s) =
∏
ω̂

(
κ0ωω̂φ

F
ω̂ (β)

)αωω̂s/β Γ(1− αωω̂s

β

)

Proposition 9 The cross-sectional distributions of cost satisfy

φFω (β) =
γ

γ − φmω (−β)
Ξω
∏
ω̂

φFω̂ (β)
αωω̂
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where Ξω ≡
∏
ω̂ κ

αωω̂
0ωω̂Γ (1− αωω̂).

Proof. Evaluating (13) at s = β gives

φFω,0(β) =
∏
ω̂

(
κ0ωω̂φ

F
ω̂ (β)

)αωω̂ Γ (1− αωω̂) = Ξω
∏
ω̂

φFω̂ (β)
αωω̂

Plugging this into (12) evaluated at s = β gives the result.
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