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To decide the number, size, and location of its plants, a firm balances
the benefit of delivering goods frommultiple plants with the cost of setting
up and managing these plants and the potential for cannibalization
among them. Modeling the decisions of heterogeneous firms in an
economy with a vast number of distinct locations involves a large com-
binatorial problem. Using insights from discrete geometry, we study
a tractable limit case of this problem in which these forces operate
at a local level. Our analysis delivers predictions on sorting across
space. Compared with less productive firms, productive firms place
more plants in dense, high-rent locations and fewer plants in mar-
kets with low density and low rents. We present evidence consistent
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with these and several other predictions, using US establishment-level
data.
I. Introduction
Delivering products and services to locations where consumers can easily
access them involves complex decisions about where to locate plants and
how large these plants should be. Having too few establishments is costly
because it increases the distance to consumers. Having too many involves
large span-of-control and fixed costs, as well as plants that cannibalize each
other’s customers. Understanding how these trade-offs play out for firms
with different characteristics in an economy consisting of many local mar-
kets that differ in demand and production costs is complex. Perhaps be-
cause of the difficulty of the problem, little is known about the solution
to this fundamental problem of how to organize production. The sorting
of firms in space determines not only the profitability of firms but also con-
sumers’ surplus as well as the characteristics of individual locations. In this
paper, we study this core component of a firm’s production problem, pro-
vide a methodology that simplifies it significantly, and contrast its implica-
tions with the data.
Consider the case of Starbucks, which operated around 14,000 stores

in 2019 in locations across the United States. Of course, not all Starbucks
are equal in size, not all locations in the United States have a Starbucks,
and the distance between neighboring Starbucks stores in a location dif-
fers across space. Simply put, there is a lot of variation across space in how
individual stores are arranged. This variation is naturally related to the
spatial distributionof populationdensity, wages, andother characteristics.
For example, figure 1 shows the location of Starbucks’ establishments in
three markets: Princeton, NJ; Richmond, VA; and New York City. Clearly,
the number of establishments, as well as the distance between them, varies
across these cities. Even within New York, the number of establishments is
much larger, and the distance between them is much shorter, in the dens-
est parts of Manhattan. What are the general characteristics of establish-
ment location decisions? Clearly, densitymatters, but the scale of establish-
ments is by nomeans constant in space. The average plant employment of
Starbucks in New York is more than 23% higher than that in Richmond.
Casual evidence and introspection might suggest that firms simply sell

in the densest markets, with the marginal market determined by a firm’s
productivity. A closer look, however, reveals a more nuanced pattern. Fig-
ure 2 provides a simple example. Walgreens and Rite Aid are pharmacies
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that operate nationally, but Walgreens’s total employment is larger, and it
has more establishments. The figure shows that, in fact, both pharmacy
chains tend to have more establishments in denser locations. However,
Rite Aid has more stores than Walgreens in less dense locations. Is this
FIG. 2.—Sorting: Walgreens versus Rite Aid. For Walgreens and Rite Aid, this graph plots
the cumulative number of establishments in locations with no more than the given popula-
tion density. Population density is measured as the population density of the 6 � 6-mile
square in which the establishment is located, using data from the 2010 decennial census, taken
from Manson et al. (2021).
FIG. 1.—Density of Starbucks locations in a 12 � 12-mile area in Princeton, Richmond,
and New York City.
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form of sorting across locations a general feature of the solution to the lo-
cation problem or of the data?
More generally, we aim to provide insights into two main questions:

First, which firms set up plants in which locations? Second, what deter-
mines the scale and location of production? Answering these questions re-
quires us to think about plants and firms as distinct, albeit related, eco-
nomic entities. In particular, we set up an economy with a continuum of
heterogeneous locations. These locations have different productivities
and amenities that determine, in general equilibrium, the distribution
of population density, wages, and residential and business rents. They also
determine, given the form local competition takes in a location, residual
demand for a firm’s product. We focus primarily on the problem of a firm
that takes these distributions as given and needs to decide whether and
how to serve each consumer. The firmdecides where to set up production
plants, how large eachplant shouldbe, and fromwhichplant to serve each
of its customers. We assume that firms face iceberg transport costs. Setting
upaplant entails a fixed cost that depends on local land rents. Theproduc-
tivity of a plant depends on local characteristics as well as a firm-specific
component that decreases with the total number of plants the firm oper-
ates. In other words, increasing a firm’s span of control by adding plants
implies a management cost that lowers its productivity. The main trade-
off faced by the firm, therefore, is to reduce transport costs by setting up
more plants close to consumers versus setting up fewer plants to econo-
mize on fixed costs, augment productivity by lowering its span of control,
and reduce cannibalization between plants.Ours is a standard setup of this
canonical firm decision problem.
Solving this production problem when the set of potential locations is

large and heterogeneous involves a large and challenging combinatorial
optimization problem.Our contribution is to focus on a limit formulation
of the problem in which the firm chooses a density of plants, rather than a
discrete set. The firm’s problem then becomes one of calculus of varia-
tions, which is simpler to solve. Crucially, in the limit we propose, all rele-
vant trade-offs described above remain active. Specifically, we study a limit
of the problem in which fixed and span-of-control managerial costs be-
come small while transportation costs become large. In this limit economy,
the problem of the firm becomes amenable to an analytical characteriza-
tion, making it easy to transparently characterize its implications.
In characterizing the solution to thefirm’s problem in the limit economy,

we apply insights from discrete geometry, exploiting the sum-of-moments
theorem by Fejes Tóth (1953). The theorem provides the optimal way to
arrange plants across space when economic activity is uniform and the
number of plants is large. When space is one-dimensional, plants should
be located at the centers of equal-length intervals. In two dimensions, the
result states that plants should be located at the centers of catchment areas
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given by hexagons arranged so as to cover all locations. The intuition for
this result is that, among all polygons with which one can construct a uni-
form tessellation, the hexagon is the closest to a circle.1 A circle minimizes
the average distance from a plant located at its center to its customers.
However, unlike hexagons, circles cannot be used repeatedly to form a tes-
sellation. We extend the theorem to an environment where economic
activity is heterogeneous across space. Specifically, customers are not neces-
sarily uniformly distributed across space, while plant costs and productivi-
ties also differ across locations.
Apart frombeing obviously important for practical applications, our ex-

tension of the theorem allows us to study sorting patterns, namely, the
many-to-manymatching between heterogeneous firms and heterogeneous
locations. It helps us understand examples such as Starbucks, orWalgreens
and Rite Aid, for which the number of establishments changes with cus-
tomer density but at different rates and with different ranges of locations
that vary with the firm’s aggregate scale. In general, our theory delivers
testable implications on sorting patterns across firms for industries that
are well approximated by our limiting economy—industries for which
catchment areas are small. First, more productive firms set upmore plants
in denser, high-rent locations than less productive firms. Perhaps more
surprising is that they also set up fewer plants inmarkets with lower density
and rents. For highly productive firms, the span-of-control cost of manag-
ing additional plants in low-density locations outweighs the benefits of low
rents. In contrast, for less productive firms, low local rents aremore attrac-
tive, since they manage fewer plants and so span-of-control costs are less
relevant. Second, among firms that operate the same number of plants
in a location, the plants from the more productive firm are larger in that
location. Highly productive firms obtain large variable profits from each
plant but limit the number of plants in a location because of the span-
of-control cost they impose on the whole firm. Hence, when they set up
the same number of plants as a less productive firm in a location, they
choose to make these plants larger. In the final section of the paper, we
present evidence, using the National Establishment Time Series (NETS)
dataset, that corroborates these and other predictions of our theoretical
analysis.
One of the advantages of using our limit economy to analyze the firm

production problem is that the simplicity of the solution allows us to em-
bed the problem into an equilibrium setup. To illustrate this without add-
ing too much additional structure, we embed the firm’s problem into a
1 A tessellation is an arrangement of shapes, especially of polygons, in a repeated pattern
without gaps or overlaps.
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small industry that does not affect local characteristics.2 We show that, in
equilibrium, the local industry price index is a function of local produc-
tivity and a weighted sum of the productivity of all firms present in the
location, with weights that depend on each firm’s local footprint, that de-
termines the cost of delivering goods to customers. These are the only
local characteristics that determine equilibriumoutcomes. Analyzing real-
istic quantitative equilibrium counterfactuals is not the focus of our study,
but the method we develop to make the firm’s problem tractable can be
readily used to do so.Weprovide an algorithm to compute an industry equi-
librium of our economy and illustrate the effect of improvements, in a sin-
gle industry, in the technology to manage a firm’s span of control and the
technology to transport goods.
Canonical models of firm dynamics (i.e., Jovanovic 1982 and Hopen-

hayn 1992)makeno clear distinctionbetween a plant and a firm.However,
mounting evidence points to the importance of considering plants and
firms as different but related entities. Rossi-Hansberg and Wright (2007)
highlight large differences between the size distributions of enterprises
and establishments. In addition, Rossi-Hansberg, Sarte, and Trachter (2021)
show evidence of diverging trends in market concentration at the national
and local levels resulting from the expansion of the largest firms into
new markets. Hsieh and Rossi-Hansberg (2022) show that industries with
large increases in national market concentration also saw their top firms
expand their operations geographically through the opening of new plants
in smaller markets. Further, Aghion et al. (2019) observe that the average
number of plants per firmhas risen considerably in theUnited States, and
Aghion et al. (2019) and Cao et al. (2019) provide evidence that growth
through the opening of new plants has been a key margin of firm employ-
ment growth since 1990.
The distinction between firms and plants has beenmore prevalent in the

international trade literature, given the interest in multinational produc-
tion and export platforms. Examples of papers in this literature include
Ramondo and Rodríguez-Clare (2013), Ramondo (2014), and Tintelnot
(2017), among many others. Ramondo and Rodríguez-Clare (2013) and
Arkolakis et al. (2018) use a probabilistic structure that is remarkably trac-
table. Each plant’s technology is constant returns to scale, so decisions on
how to serve each market are independent across markets. Introducing
fixed costs of setting up plants or span-of-control costs would render
the model intractable. In general, the firm’s plant location problem can
be split into two parts: an inner problemof establishing the set of locations
serviced by each of a firm’s plants, their “catchment areas,” and an outer
2 Setting up the model in full general equilibrium with many industries and labor mo-
bility is straightforward but requires making assumptions on a number of economic funda-
mentals that are unrelated to our main focus.
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problem of determining the location and number of plants. Tintelnot
(2017) introduces fixed costs and solves the inner problem by assuming
that firms sell a continuum of products and that plant productivities follow
an extreme value distribution, which implies that plants sell to all loca-
tions. This smooths out the firm’s objective function but still requires solv-
ing the combinatorial problem of where to set up plants and how many.
All frameworks in this literature either solve the combinatorial problem
with only a few countries or assume away fixed costs of setting up new
plants.Methodologically, ourmain contribution is to solve the outer prob-
lemand characterize it analytically in a limiting case where all costs remain
relevant. In contrast to the multinational literature, which has focused
mostly on manufacturing, the particular limiting economy we study is
likely to be a better approximation of industries with high transport costs,
where the number of plants per firm is large. Our main substantive contri-
bution is to incorporate span-of-control costs into the firm’s problem and to
characterize the resulting sorting patterns. Most models in the literature
have the feature that the less profitable markets are reached only by the
more productive firms. In contrast, our environment is one in which it
is the less productive firms that locate in the more marginal markets.
The industrial organization literature has also analyzed how individual

firms set up distribution networks in space. Seminal papers include Jia
(2008) and Holmes (2011). Importantly, many of these frameworks study
cases where opening stores in one location increases themarginal value of
opening stores in other locations, the so-called supermodular cases.3 The
lack of cannibalization across plants makes these cases somewhat easier
to handle. On the contrary, cases where cannibalization is prevalent, so
that setting up new plants reduces the value of other plants, cannot easily
be solved except for algorithms that, at worst, evaluate all possible combi-
nations. Recently, Hu and Shi (2019) and Arkolakis, Eckert, and Shi (2023)
have developed algorithms to solve these types of “submodular” problems
more efficiently by iteratively pruning the choice set, but doing so for large
numbers of locations remains a challenge. Furthermore, the purely nu-
merical nature of essentially all this literature implies that few general in-
sights have been obtained. Our analytical approach has the advantage of
providing a set of general implications that we can contrast with micro data.
There is a large, active literature in operations research studying the

facility location problem. The classic Weber problem of placing a single
plant to serve many destinations at minimal cost (Weber 1909) was gener-
alized to study the placement ofmultiple plants by Stollsteimer (1961) and
Balinski (1965). There are many versions of the problem. One approach,
used bymuchof the economics literature, studies the problemwith a finite
3 Holmes (2011) assumes submodularity but does not solve the model; he estimates pa-
rameters using moment inequalities.
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set of discrete locations. The alternative, which we follow, models space as
continuous. Another distinction is whether or not there are limits on each
plant’s output (these are known as the “capacitated” or “uncapacitated” fa-
cility location problems). Given the complexity of the problem, the litera-
ture has focused on numerical algorithms that deliver approximate solu-
tions in polynomial time.4

We provide a characterization of the matching of heterogeneous firms
with multiple plants to heterogeneous locations. Nocke (2006), Gaubert
(2018), andZiv (2019) study the assignment of single-plant firms tohetero-
geneous locations. Behrens, Duranton, and Robert-Nicoud (2014), Eeck-
hout, Pinheiro, and Schmidheiny (2014), Diamond (2016), Davis and
Dingel (2019), and Bilal and Rossi-Hansberg (2021) study the assignment
of workers to heterogeneous locations. None of these papers, however, ad-
dress sorting when the agent, in our case a firm, can choosemany locations
concurrently.5

The rest of the paper is organized as follows. Section II presents the
problem of the firm, proposes and studies the limit problem, and derives
ourmain results. Section III embeds heterogeneous firms solving the pro-
duction problemwithmultiple plants into an industry equilibrium. It also
presents numerical examples that illustrate the effect of changes in the ef-
ficiency of span-of-control and transport costs. Section IV contrasts some
of the main implications of our solution with panel data of firms and es-
tablishments. Section V concludes. An appendix, available online, includes
all technical derivations, presents additional robustness results and data
constructions details, and describes the numerical algorithm.
II. The Multiplant Firm Problem
We consider the problem of a firm deciding how to serve customers lo-
cated in a unit square, S 5 ½0, 1�d ⊂ Rd , where d ∈ f1, 2g is the dimen-
sion of the space.6 Each location s ∈ S is characterized by an exogenous
4 These problemshavebeen shown tobeNP-hard inbothone and twodimensions (Fowler,
Paterson, and Tanimoto 1981). It has been shown that, unless P 5 NP, there is a bound on
the performance of such algorithms: they cannot guarantee a solution that is better than
1.463 times the actual minimal cost (Guha and Khuller 1999; Sviridenko 2002). Algorithms
that deliver performance close to this bound have been recently proposed by Byrka and
Aardal (2010) and Li (2013).

5 Empirically, assessing sorting patterns when each plant is a stand-alone unit is difficult
because of the reflection problem. In particular, one can observe whether plants in denser
locations are larger, but it is not clear whether that is due to sorting or to the impact of
being in a dense location. In our setting, with firms that operate many units in different
locations, we can exploit leave-out strategies to argue that there is clear evidence of positive
assortative matching.

6 Our results can be easily generalized to a Euclidean space S that is closed, bounded,
and Jordan measurable. While it seems intuitive that our results could be extended beyond
two-dimensional space, doing so would require a resolution of the Gersho conjecture
(Gersho 1979), which remains open for three or more dimensions.
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productivity level Bs, as well as local equilibrium characteristics that firms
take as given, namely, the residual demand function, Ds(⋅), the wage rate,
Ws, and the commercial rent, Rs.
There is a set of firms, j ∈ J . Each firmproduces a unique variety. A firm

is characterized by its productivity, qj. It chooses a finite set of locations
Oj ⊂ S in which to set up plants. Conditional on operating a plant at lo-
cation o, production requires only local labor, which is employed at wageWo.
A plant’s productivity is the product of a local component, Bo, and a
firm component, Z(q j, Nj). The firm component is increasing in a stan-
dard idiosyncratic productivity level q j and decreasing in the firm’s total
number of plantsNj 5 jOj j. The latter captures the productivity cost of in-
creasing the firm’s span of control. We also assume that Zðq, 0Þ < ∞. In
sum, if a firm operates a total of Nj plants, its productivity in location
o ∈ Oj is BoZðqj ,NjÞ. Each plant takes up y units of commercial real estate,
with rental cost Rs per unit of space. Trade between any two locations in-
curs an iceberg shipping cost. For oneunit of a good to arrive at distance d,
T ðdÞ ≥ 1 units must be shipped. We normalize T ð0Þ 5 1 and assume that
T(d) is strictly increasing, satisfies the triangle inequality, and diverges as
d→∞.
We posit a market structure in which firms transport goods to house-

holds and choose a separate price for its good at each destination.7 Firms
will serve customers in the least costly possible way. Thus, the cost of de-
livering one unit of good j from a plant in o to a consumer in s is
WoT ðdsoÞ=BoZ ðqj ,NjÞ, where dso denotes the distance between s and o.
Let ΛjsðOjÞ ; mino∈Oj

ðWoT ðdsoÞ=BoZðqj ,NjÞÞ be j ’s minimal cost of deliver-
ing one unit of good j to a consumer in location s. Let pjs be the price
charged by j to consumers in s. Then, if Ds(pjs) is the residual demand
for variety j in location s, the optimal price maximizes

max
pjs

DsðpjsÞ pjs 2 Λjs

� �
:

The problem above can lead to pricing rules where markups depend on
local characteristics. To simplify the problem, we abstract from spatial var-
iation in markups and assume the following about the residual demand
function.
Assumption 1. ResidualdemandsatisfiesDsðpjsÞ 5 Dsp2ε

js ,whereDs sub-
sumes all determinants of local demand, including the local price index.
7 An alternative market structure—one in which households incur shipping costs and
choose which plant to purchase from and each firm chooses a separate price at each of
its plants—is equally natural. If households have isoelastic residual demand, as we assume
below, the two market structures yield the same revenue and employment for each plant
and the same consumption and expenditures for each consumer. We focus on the market
structure in which firms incur shipping costs because it is simpler to state and work with.
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Assumption 1 is satisfied in the standard case with monopolistic com-
petition and CES (constant elasticity of substitution) preferences with
elasticity of substitution across varieties given by ε. Then, as usual, pjs 5
½ε=ðε 2 1Þ�Λjs.
Firm j ’s profit can be expressed as

pj 5 max
Oj

ð
s

max
pjs

Dsp
2ε
js pjs 2 Λjs Oj

� �� �
ds 2 o

o∈Oj

Roy

( )
, (1)

or, using the expression for j’s price,

pj 5 max
Oj

Z qj ,Nj

� �ε21

ð
s

Dsmax
o∈Oj

boT dsoð Þ12ε
� �

ds 2 o
o∈Oj

Roy

( )
, (2)

where bo ; ½ðε 2 1Þε21=εε�ðBo=WoÞε21 summarizes local productivity and
wages.
A. The Catchment Area of a Plant
The catchment area of a plant in location o is formed by locations s to
which the firm sells goods from the plant in o. Formally, the catchment
area of a plant in location o is

s ∈ S for which o 5 arg max
~o∈Oj

b~oT ds~oð Þ12ε
� �� �

: (3)

A plant’s catchment area can be empty if its cost, relative to other nearby
plants, is high enough.
Note that, once plants are placed in locations Oj, the catchment area of

each plant depends only on transportation costs and on the production
cost of locations where plants are placed.When space is one-dimensional,
d 5 1, and transport costs rise sufficiently fast with distance, catchment
areas are simply a set of nonoverlapping intervals covering S, such that
the cost of servicing costumers at the boundary is identical for both adja-
cent plants. Therefore, the size of the catchment area of a particular plant
is decreasing in the plant’s cost and increasing in the cost of adjacent
plants. When transport costs do not rise fast with distance, the catchment
area of a plant can be the union of disjoint segments.With two-dimensional
space, catchment areas can be substantially more complicated. In any of
these cases, it is straightforward, although computationally costly, to solve
numerically for catchment areas.8 Nevertheless, we show that when we
8 This problem is equivalent to constructing a weighted Voronoi diagram. Tintelnot
(2017) approaches this problem by assuming that plants sell a continuum of goods pro-
duced with productivities drawn from a distribution with infinite support. The implication
is that the catchment areas of all plants overlap and cover the whole space.
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incorporate the decision of where to place plants, the optimal choice
leads to a structure of catchment areas that greatly simplifies the problem.
In particular, in the limiting case that we study, local catchment areas are
always characterized by intervals (d 5 1) or hexagons (d 5 2).
Examples in one and two dimensions.—This section illustrates the role of

the production cost in determining catchment areas. We first focus on
the simpler case of d 5 1 with S 5 ½0, 1�, so that catchment areas parti-
tion the unit interval. We show that nonconvex catchment areas can
arise when transport costs do not rise quickly with distance. We then turn
to an environment with two dimensions where S is the unit square. We
show examples of how changes in fundamentals across locations affect
catchment areas. For each exercise, we set ε 5 2 and solve two cases with
different distributions for bo across space.9

Figure 3 presents the one-dimensional case. We consider the problem
of a firm that (perhaps suboptimally) places five plants at regular intervals
across space.10 We assume that transport costs are given by T ðdsoÞ 5 11
0:75dso , where dso is the Euclidean distance between s and o. The left-hand
panel presents the resulting catchment areas when production costs are
the same across all locations—that is, bo 5 1 8 o ∈ Oj—while the right-
hand panel shows the resulting catchment areas when the third location
is 14.5% more productive than its counterpart in the left-hand panel. In
both cases, catchment areas are characterized by a collection of segments.
When all plants face the same cost, catchment areas are equally sized line
segments. When one plant, in this example plant 3, faces a lower cost,
catchment areas vary in size and need not be convex. More productive lo-
cations have larger catchment areas, as evidencedby the spatial expansion
of plant 3’s catchment area. Note that plant 3’s catchment area depends
on its own cost, its location, and the cost of its neighbors—plants 2 and 4—
as well as the location and cost of its neighbors’neighbors—plants 1 and 5.
In other words, designing the catchment area of plant 3 requires under-
standing this plant’s interactions with all other plants.11 Note also that
the nonconvexity in the catchment area of plant 3 is possible because
transport costs do not rise quickly with distance.
Similar logic applies for the two-dimensional case. Figure 4 presents

catchment areas when nine plants are arbitrarily placed in a regular grid.12

For these exercises we set transportation costs equal to T ðdsoÞ 5 1 1 dso .
As in the one-dimensional case, we assume that there is no variation in
9 The choice ε 5 2 is not essential to generate these examples.
10 Plants locations are o ∈ f1=10, 3=10, 5=10, 7=10, 9=10g.
11 One can show that if production costs are similar across space and if trade costs rise

sufficiently fast with distance, a plant’s catchment area depends only on its cost and that of
its direct neighbors.

12 In the figure, plants are located at (1/6, 1/6), (1/6, 1/2), (1/6, 5/6), (1/2, 1/6),
(1/2, 1/2), (1/2, 5/6), (5/6, 1/6), (5/6, 1/2), and (5/6, 5/6).
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economic fundamentals, so bo 5 1 8 o ∈ Oj , in the left-hand panel. The
right-hand panel presents the results when we increase the costs of the lo-
cation in the top-left corner by setting productivity to bo 5 0:85, and we
reduce the costs of the central and bottom-right corner locations by let-
ting bo 5 1:2.
As figure 4 shows, when production costs are constant across produc-

tion locations, catchment areas are all equally sized, are all convex, and are
all polygons. However, when production costs vary, the catchment areas can
take different shapes and sizes, can be nonconvex, and are not polygons.
While the one-dimensional case is simpler in the sense that catchment

areas are, at most, a combination of disjoint intervals, both the one- and
two-dimensional cases share the same basic features and complexities: lo-
cal characteristics affect the size of catchment areas, andnonconvex catch-
ment areas can arise as a combination of transport cost varying slowly with
FIG. 4.—Catchment areas in two dimensions. The figure present the catchment areas, as
defined in equation (3), for the case where nine plants are located in the square space. Each
dot in each plot corresponds to the location of a plant. The number in parentheses next to
each dot corresponds to the value for bo for that dot.
FIG. 3.—Catchment areas in one dimension. The figure presents the catchment areas, as
defined in equation (3), for the one-dimensional case where five plants are located in a line.
The left-hand plot presents the case where all locations are equally productive, while the
right-hand plot presents a case where plant 3’s location is more productive. Each dot in each
plot corresponds to the location of a plant. The number in parentheses under each dot cor-
responds to the value of bo for that dot. The number above each brace indicates which plant
serves that location, i.e. the catchment area of a particular plant.
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distance and specifics about the productivity of a location, the productiv-
ity and location of its neighbors, the productivity and location of the
neighbors’ neighbors, and so on.
The difficulty of these problems may seem daunting, particularly once

we introduce more locations and richer heterogeneity and especially
when we incorporate the outer problem of how many plants to use and
where to place them. Perhaps surprisingly, in the limit economy we study
below, solving this outer problemof optimal plant locations imposes struc-
ture that leads to a simple characterization of the inner problemof solving
for catchment areas in both one and two dimensions. The only case where
we can characterize the solution to the full problem without relying on
the limit economy is the one-dimensional case with uniform locations.
We turn to that problem first.
B. A Simple Special Case in One Dimension
We now turn to the outer maximization problem of determining how
many plants to set up and where to do so.We start by considering one spe-
cial case for which the solution to this outer problem is straightforward. If
space is one-dimensional and economic activity is uniform across loca-
tions, the optimal configuration is to have plants equally spaced, so that
catchment areas are equal in length. In this case, the firm’s profit function
can be expressed as

pj 5 sup
N

xZ qj ,N
� �ε21

NG 1=Nð Þ 2 RN ,

where x ; ½ðε 2 1Þε21=εε�DðB=W Þε21 and GðuÞ 5 Ð u=2
2u=2T ðjdjÞ12ε dd. The

variable x combines the demand, D, facing the plant at each location
with the cost of effective labor,W/B, into a measure of local profitability,
andG(u) is the integral of the function T ð⋅Þ12ε over all distances between
the origin and points of a line segment of length u centered at the origin.
We refer to the function kðN Þ ; NGð1=N Þ as the efficiency of distribution.

It represents the fraction of the value of sales a firm retains after subtracting
the cost of optimally transporting the goods to consumers from itsN plants.
Figure 5provides a graphical representationof the functionG(⋅) and the im-
plied function k(⋅). Thefigure presents an examplewith four plants,N 5 4,
with catchment areas of length 1=N . It plots the function T ðdÞ12ε, where d is
the distance from the plant to the customer’s location. For customers at the
plant’s location, d 5 0, there is no loss from transport costs. For customers
farther away, profits are reduced by a factor of T ðdÞ12ε. The shaded area is
Gð1=N Þ, the fraction of profit the firm gets from a plant’s catchment area
relative to that in a world with no transport costs. The efficiency of distribu-
tion, kðN Þ 5 NGð1=N Þ, is the fraction of profit the firm gets per unit of
space, relative to that in a world with no transport costs.
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In two dimensions, there is no closed-form solution for the exact place-
ment of plants, evenwhen economic activity is uniform across space. Never-
theless, there is a known upper bound for the profit a firm can attain, also
based on the strategy of placing plants in a regular pattern across space.
We discuss this strategy further in section II.D.
As discussed above, we aim to venturebeyond these special cases inwhich

economic activity is uniform, so that we can discuss how a firm’s local foot-
print varies with local economic conditions or how firms sort across space.
Thus, we nowpropose a reformulation of this problem that can be tractably
studied, while still preserving its main features and trade-offs.
C. A Tractable Limit
We propose a tractable limit of the firm’s problem inwhich the number of
plants per firm grows large so that the firm is essentially choosing a density
of plants, rather than a discrete number. In particular, we study a limit in
which the space that plants take up grows small, trade costs grow large,
and the productivity cost for havingmany plants grows small. We take lim-
its at carefully chosen rates so the problem is well behaved in the limit.
Specifically, for some Δ > 0, let

yΔ 5 Δd ,

T ΔðdÞ 5 t
d

Δ

� 	
, and

Z Δ q,Nð Þ 5 z q, ΔdNð Þ:
for d 5 1, 2. We study the limit as Δ→ 0.
We want to study a limit in which the key trade-offs between the fixed

and managerial span-of-control costs of setting up plants and the cost
FIG. 5.—One-dimensional representation of the efficiency of distribution, kðN Þ ;
NGð1=N Þ.
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of reaching consumers remain relevant, a limit in which plants continue
to potentially cannibalize each other’s customers. Thus, as Δ declines
and the cost of adding plants falls, we increase transport costs. In two-
dimensional space, d 5 2, yΔ and ZΔ depend on the square of Δ, since
space is two-dimensional, while, in contrast, transport costs are a func-
tion of distance, which is one-dimensional.13 The following proposition
describes the profits of the firm in this limit.
Proposition 1. Suppose that Rs, Ds, and Bs/Ws are continuous func-

tions of s. Then, in the limit as Δ→ 0, the profits of firm j satisfy

pj 5 sup
n : S→R1

ð
s

xsz q j ,

ð
n~sd~s

� 	ε21

nsg 1=nsð Þ 2 Rsns


 �
ds,

where xs ; ½ðε 2 1Þε21=εε�DsðBs=WsÞε21. In one dimension, g(u) is the inte-
gral of the function tð⋅Þ12ε over all distances between the origin and points
of a line segment of length u centered at the origin. In two dimensions,
g(u) is the integral of the function tð⋅Þ12ε over all distances between the
origin and points of a regular hexagon of area u centered at the origin.14

Proposition 1 shows that in the limit, the firm’s problem is one of calcu-
lus of variations, which, as we show below, is much easier to analyze. As be-
fore, the variable xs combines both local demand facing the plant, Ds, and
local cost of effective labor, Ws/Bs, into a measure of local profitability.
Hence, in the limit, a location’s characteristics can be fully summarized
by two variables: local rent, Rs, and local profitability, xs. In contrast, before
taking the limit, the relevant features of a locationwere infinite-dimensional,
comprised of the local effective wage and demand in surrounding locations.
Note also that, in the limit, aside from the span-of-control considerations,
the problem is completely separable across locations. An important impli-
cation of this last result is that the problems in one and two dimensions
13 There is a natural analogy to the continuous time limit of discrete-time portfolio choice
problems. In thosemodels, as the length of a period shrinks to zero, the amount of riskmust
grow without bound, so that there is a meaningful amount of risk to compare across assets.
The key, as in our setup, is that the speed at which risk grows is the same as the speed at which
the period shrinks. Thus, the relative importance of risk per period unit remains constant.
In the appropriate limit, the value of assets follows a Brownian motion.

14 In one dimension, g ðuÞ 5 Ð u=2
2u=2tðjdjÞ12ε dd: In two dimensions,

g ðuÞ 5
ð ffiffiffiffiffiffiffiffiffiffiffi

323=22u
p

0

tðdÞ12ε2pd-
dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

323=22u
p

 !
dd,

where v(r) is the fraction of circle with radius r that intersects with the interior of a regular
hexagon with side length 1. As we show in app. A.1.2, simple trigonometric arguments yield

-ðdÞ 5
1 0 ≤ d ≤

ffiffiffi
3

p
=2,

1 2
6

p
cos21

ffiffiffi
3

p
=2

d

� 	 ffiffiffi
3

p
=2 ≤ d ≤ 1:

8><
>:
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end up being incredibly similar. The only difference is that when solving
the problem in one dimension, the function g(u) requires integrating
over a line segment, while in two dimensions it requires integrating over
a hexagon.
Before presenting a sketch of the proof of proposition 1, we go back to

the simpler case where all locations are identical that we analyzed in sec-
tion II.B for one-dimensional space. We then proceed to sketch the proof
of proposition 1 and characterize the solution to the profit maximization
problem. Most formal proofs are relegated to the appendix unless explic-
itly stated.
D. Uniform Space
We begin by discussing the simpler case where all economic activity is uni-
form across locations. We analyzed the one-dimensional version of this
problem in section II.B. Here we also discuss the case of two dimensions
where there is no closed-form solution for the placement of plants. As be-
fore, assume that the local demand shifter for all locations is D, effective
productivity is b, and commercial land rents are R. When space is homo-
geneous, there are some known results to the solution to the firm’s prob-
lem of choosing where to locate its plants. In particular, if a firm places N
plants, the firm’s payoff will be no higher than xzðqj ,N Þε21NGðjSj=N Þ2
RN where jSj is the length of S in one dimension and the area of S in
two dimensions, and, as stated in proposition 1, x ; Db and G(u) is the
integral of the transportation cost T ð⋅Þ12ε over either a line segment of
length u or a regular hexagon with area u centered at the origin, in each
respective case. For the one-dimensional case, the optimality of catch-
ment areas that are congruent line segments is trivial, as shown in the
left-hand panel of figure 6: given all the symmetry built into the model,
it is straightforward to set the catchment area of each plant to be jSj=N ,
with plants placed at the center of each catchment area. In this case, as
we argued in section II.B, xzðqj ,N Þε21NGðjSj=N Þ 2 RN is not only an up-
per boundbut is also equal to themaximumpayoff to a firmwhen it places
N plants in a one-dimensional uniform space.
When space is two-dimensional, the result follows from the sum-of-

moments theorem in Fejes Tóth (1953), one of the landmark results in
discrete geometry.15 That is, the nearly optimal policy is to have uniform
catchment areas in the formof hexagons, with plants at the center of each
hexagon. The right-hand panel of figure 6 shows an example of this solu-
tion. Why are hexagonal catchment areas optimal in two-dimensional
15 While the appearance of hexagons as a result of the optimal configuration of economic
activity in space is sometimes associated with Christaller (1933), the formal statement and
proof are due to Fejes Tóth (1953).
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space? Jensen’s inequality implies that it is optimal to have catchment
areas of roughly the same area. Furthermore, optimality dictates that the
shape of each catchment area should minimize the average distance from
the center to the points in the catchment area. Among all shapes, a circle
minimizes this average distance. However, one cannot form a tessellation
with circles, as they would either overlap or leave empty spots. Among all
polygonswith whichone can construct a uniform tessellation, the hexagon
is closest to a circle. Note that this is an upper bound. As the right-hand
panel in figure 6 shows, N disjoint uniform hexagons of size jSj=N gener-
ically donot fit exactly in the spaceS.16 It is straightforward to show that ifN
is large, that is, if jSj is large relative to the size of the catchment areas, then
the boundary issue is quantitatively less relevant. In the “appropriate” limit,
the upper bound is attained.
E. Heterogeneous Space
We are interested inunderstanding the locationof a firm’s plants inhetero-
geneous space. Section II.Dprovided important tools that we take advantage
of for thegeneral casewith spatial heterogeneity. For thehomogeneous-space
case, we know how to construct the solution to the firm’s problem for the
d 5 1 case for any number of plants N, and for the d 5 2 case we know
how to do it when the number of plants is “large.” Interestingly, the limit
that we explore allows us to apply both results. For the heterogeneous-
space case, proposition 1 provides our key result. The proposition estab-
lishes that we can use a “large-N ” limit to obtain a simple characterization
FIG. 6.—Filling out space. The left-hand panel shows a line of length S divided byN 5 4
line segments of length S=N . The right-hand panel shows a square of area jSj divided by N
hexagons of area jSj=N .
16 Bollobás (1973) showed that the upper bound can be attained only if S is the union of
N disjoint regular hexagons.
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of the firm’s optimization problem when space is heterogeneous. The key
insight is that when economic activity is continuous over space, it is locally
uniform. As a result, in the limiting economy, the solution for homoge-
neous space applies locally. The proposition states that, in the limit, the
optimal policy is to place plants so that local catchment areas are uni-
form, infinitesimal intervals in one-dimensional space and hexagons in
two-dimensional space. The variable ns is the measure of plants in the
neighborhood of s, so that 1=ns is a measure of the size of the catchment
areas.
Section II.D showed that, when economic activity is uniform, the solu-

tion for one-dimensional space is simpler than that for two dimensions.
When economic activity is heterogeneous across space, the problem is con-
siderably more complex for either one or two dimensions, as discussed in
section II.A. The local logic that we exploit in this paper allows us to make
substantive progress in both one- and two-dimensional problems with spa-
tial heterogeneity. Once we know the solution for homogeneous space for
the “large-N ” limit, which we have from Fejes Tóth (1953), working with
two-dimensional space is nomore difficult than working in one dimension.
For readability, we describe the proof when space is two-dimensional.
A sketch of the proof of proposition 1.—In economy Δ, firm j’s profit is

given by

pΔ
j 5 max

Oj

Z Δ qj ,Nj

� �ε21

ð
s

Dsmax
o∈Oj

boT
Δ dsoð Þ12ε

� �
ds 2 o

o∈Oj

Roy
Δ

( )
:

The strategy is to create upper and lower bounds for firm j’s profit. We
start by dividing the space S into congruent squares with side length k,
indexed by i ∈ I k , denoted by Sk

i (for any k such that 1/k is an integer).
For each Δ, k, we construct upper and lower bounds on firm j’s profit,�pkΔ

j

and pkΔ
j , such that

pkΔ
j ≤ pΔ

j ≤ �pkΔ
j :

To construct the upper bound, we begin by considering a best-case sce-
nario for each square by supposing that each square’s highest demand,
highest effective productivity, and lowest rent apply everywhere in the
square. That is, for location s in square Sk

i , we replace Ds, bs, and Rs with
�Dk
s ; sup~s∈Sk

i
D~s, �bks ; sup~s∈Sk

i
b~s, R

k
s ; inf~s∈Sk

i
R~s. Similarly, to construct the

lower bound, we consider a worst-case scenario for each square by suppos-
ing that each square’s lowest demand, lowest effective productivity, and
highest rent apply everywhere in the square.
In appendix G, we explore an example where we solve numerically for

the upper and lower bounds�pkΔ
j and pkΔ

j . Intuitively, the example shows
that the bounds get much tighter for small Δ’s, when the chosen number
of local plants is large.
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We next use the sum-of-moments theorem separately for each square to
give an upper bound on the profit the firm could attain from that square
in that best-case scenario. As described in figure 6, if the firm chooses to
placeNi plants in square Sk

i , the upper bound corresponds to assigning to
each of those plants a catchment area that is a regular hexagon with area
ðk � kÞ=Ni .17 To construct a lower bound for the worst-case scenario, we
impose an ad hoc restriction on the firm’s strategies so that all plants within
Sk

i have catchment areas that are regular hexagons of the same size and
are fully contained in the square Sk

i ; since regular hexagons do not form a
tesselation of a square, not all customers inSk

i are served by the firm in this
suboptimal policy.
The second step is to fix an arbitrary k and study the limit as Δ→ 0.

Define the function kðnsÞ ; nsg ð1=nsÞ. We prove that

lim
Δ→ 0

�pkΔ
j ≤ �pk

j ; sup
ns≥0f g

ð
�Dk
s
�bks z q j ,

ð
n~s d~s

� 	ε21

k nsð Þ 2 nsR
k
s

� �
ds

and that

lim
Δ→ 0

pkΔ
j ≥ pk

j ; sup
ns≥0f g

ð
s

Dk
s b

k
s z q j ,

ð
n~s d~s

� 	ε21

k nsð Þ 2 ns
�Rk
s

� �
ds:

If we definepj ; limΔ→ 0p
Δ
j to be the firm’s profit in the limiting economy,

these, together with pkΔ
j ≤ pΔ

j ≤ �pkΔ
j , imply that

pk
j ≤ pj ≤ �pk

j :

We obtain these results because, for any k, the economic features are uni-
form within each square Sk

i in both the best- and worst-case scenarios, so
we can use results from discrete geometry to derive relatively simple ex-
pressions for the bounds. For the upper bound, the results imply that
the catchment areas within each square Sk

i form amesh with uniform reg-
ular hexagons. For the lower bound, the ad hoc restriction imposes that
the catchment areas form a mesh with uniform regular hexagons.
The final step is to show that

lim
k → 0

�pk
j 5 lim

k → 0
pk

j 5 sup
ns≥0

ð
s

Dsbsz q j ,

ð
n~s d~s

� 	ε21

k nsð Þ 2 Rsns

� �
ds,
17 In constructing this upper bound,we compute, separately for each squareSk
i , theprofits

thefirmwould earn from theplants in that square if it hadnoother plants in all ofS.We then
add together the profits for all k � k squares. This double-counting of customers is fine be-
cause we are constructing an upper bound for profits, not the value of profit for any feasible
policy. In any case, as Δ→ 0, sales outside a plant’s k � k square go to zero.
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that is, that the limit can be interchanged with the supremum. Since xs 5
Dsbs, this proves proposition 1. The rest of the technical details of the
proof are relegated to the appendix.
F. Convergence of the Policy Function
Proposition 1 established that the firm’s profit function converges to a
well-behaved limit. Here we establish further that the policy function,
the choice of the measure of plants by location, converges as well.
Proposition 2. Suppose that the problem in the limiting economy

has a unique solution, n*. For each Δ, letOΔ* be a solution to the problem
in economy Δ. Then for any e, there is a �Δ small enough so that for any
Δ < �Δ and any Jordan-measurable set A⊆ S, Δd OΔ* \ A  2 ð

s∈A
n*s ds

 < e:

The proposition describes the precise sense in which the policy func-
tion converges. Consider any Jordan-measurable set of locations, A.18 As
Δ→ 0, the number of plants a firm places in a set of locations naturally
rises, as rental costs fall and trade costs rise. Nevertheless, appropriately
scaled by Δd, the number of plants placed in the set converges to a well-
behaved limit that corresponds to the solution in the limit economy.19

Hence, the proposition suggests a natural way to approach data on plant
locations. Namely, rather than asking whether a firm placed a plant in a
particular location, the proposition suggests looking at the number of
plants a firm places in a contiguous area (e.g., a 12 � 12-mile square).
A sketch of the proof of proposition 2.—We show uniform convergence

of the policy function in two steps. First, we derive properties of a firm’s
limiting problem. We show that if the limiting problem has a unique so-
lution, n*, then for any ε > 0 there exists an h > 0 such that n ∈ �N and
18 Jordan-measurable sets are, loosely, those that are well approximated by finite unions of
rectangles. These include all bounded convex sets but not all Lebesgue-measurable sets. A
set is Jordan measurable if and only if its indicator function is Riemann integrable. Why is
the theorem restricted to Jordan-measurable sets? The setO Δ* is finite for anyΔ > 0 and thus
always has Lebesguemeasure zero. It is hard to rule out the possibility that a single setA with
Lebesgue measure zero (e.g., points in the unit square with rational coordinates) contains
O Δ* for all Δ, in which case the Lebesgue integral

Ð
s∈An

*
s ds would equal zero.

19 We do not know whether there is a unique optimal policy function for economy Δ (and
we have no way of checking). However, the theorem applies to any optimal policy functions
O Δ*. It is easier to assess uniqueness for the limiting economy. We can divide the problem of
the limiting economy into a one-dimensional problem of choosing the total measure of
plants and a subproblem of choosing a spatial allocation of those plants. It is straightforward
to show that conditional on N, there is a unique solution to the subproblem of placing the
plants in space (up to sets of measure zero). We do not provide sufficient conditions to en-
sure uniqueness of the outer problem, but the fact that it is one-dimensional means that it is
easy to verify uniqueness numerically.
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jΠðnÞ 2 Πðn*Þj < h imply
Ð
s∈Sjns 2 n*s j ds < ε, where �N is a space of func-

tions with a uniform bound and Π(n) is the profit the firm would obtain
from following strategy n.
In the second step, we study the sequence of economies as Δ→ 0. As in

the proof of convergence of the value function in appendix A.2, we con-
struct a sequence of bounds on the profit function that get tighter as
Δ→ 0. We show that for economy Δ, the optimal choice OΔ* has a corre-
sponding strategy in the limiting economy, nΔ*. As Δ→ 0, the bounds get
tighter and two things happen. First, OΔ* gets close to nΔ*: over any Jordan-
measurable set A, Δd jO Δ* \ Aj uniformly approaches

Ð
s∈An

Δ*
s ds. Second,

the corresponding strategy nΔ* delivers a value in the limit economy close
to optimum. This, along with the first step, implies that nΔ* converges to
n*. Namely, we have uniform convergence of the policy function to n*.
In constructing the strategy nΔ*, we use segments of length k or k � k

squares to find upper and lower bounds, as in the proof of proposition 1.
In particular, for any Δ and k we can construct a strategy in the limiting
economy that maximizes profit subject to the restriction that themeasure
of plants on each segment/square corresponds to the number of plants of
OΔ* in the segment/square multiplied by Δd . In the proof of proposition 1,
the key step was to take the limit as Δ→ 0 for a given k and then take k → 0.
Here, the key trick is to choose a sequence of k 5 K ðΔÞ so that, as we take
the limit as Δ→ 0, the sequence k 5 K ðΔÞ also converges to zero (albeit
more slowly than does Δ). As a result, for each Δ, we construct the strategy
nΔ* in the limit economy that maximizes profits, subject to the restriction
that the measure of plants on eachK(Δ) segment, or K ðΔÞ � K ðΔÞ square,
corresponds to the number of plants of OΔ* in the segment/square multi-
plied by Δd.
G. The Local Efficiency of Distribution and Its Properties
As we discussed above, we refer to the function kðnsÞ ; nsg ð1=nsÞ as the
local efficiency of distribution in the neighborhood of s. Recall that
k(ns) represents the fraction of the value of local sales a firm retains after
subtracting the cost of optimally transporting the goods to consumers
from its ns plants. The following lemma describes some useful properties
of k.20

Lemma 3. kðnÞ ; ng ð1=nÞ is strictly increasing and strictly concave
and satisfies the following properties:
20 When space is one-dimensional, we can prove a converse of lemma 3. If k is twice con-
tinuously differentiable, strictly increasing, strictly concave, and satisfies kð0Þ 5 0, k0ð0Þ ∈
ð0,∞Þ, k00ð0Þ 5 0, and limn→∞n½1 2 kðnÞ� ∈ ð0,∞Þ, then there is a strictly increasing transport
cost t(d) that generates k, namely, tðdÞ 5 ½1 1

Ð ∞
1=2dk

00ðxÞx dx�1=ð12εÞ. For example, kðnÞ 5
tan21ðfnÞ=ðp=2Þ for some constant f > 0 is consistent with the trade cost tðdÞ 5
ð½1=ðp=2Þ�ftan21ð1=2dfÞ 2 1=½2df 1 ð2dfÞ21�gÞ1=ð12εÞ.
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1. kð0Þ 5 0,
2. limn→∞kðnÞ 5 1, and
3. 1 2 kðnÞ ∼n→∞n21=d .

If transport costs satisfy limd→∞d
22d=ðε21ÞtðdÞ 5 ∞, then
4. k00ð0Þ 5 0, and
5. k0ð0Þ < ∞.
The first property says that with no plants revenues are zero; k(n) is in-
creasing, sincemore plants imply that customers are, on average, closer to
a plant. It is concave, since additional plants cannibalize existing plants,
leading to diminishing gains from reducing transport costs. The second
property states that as n grows infinitely large, catchment areas grow small
and k(n) approaches an upper bound of 1; in the limit, additional plants
provide no significant gains, and the economy becomes “saturated.” The
third property states that k(n) follows an asymptotic power law as n grows
large. If, asymptotically, trade costs increase sufficiently fast with distance,
we can provide a sharper characterization of the efficiency of distribu-
tion when n is small. The fourth property states that when the number
of plants is small, local profits increase linearly in the number of plants.
Put together, cannibalization is irrelevant for the first set of plants but be-
comes the dominant force when thenumber of plants grows large. Finally,
the fifth property says that there is no Inada condition at n 5 0. Hence,
there can be locations s in which the firm places no plants, ns 5 0.21
H. The Assignment of Plants to Locations
Proposition 1 can be used to characterize how firms place their plants. As
before, we assume that the firm takes as given the distribution of commer-
cial rents, Rs, and the distribution of local profitability, xs. The problem of
choosing how many plants to have, Nj, and their distribution in space,
nj : S→R1, can be stated as

sup
Nj ,nj : S→R1

ð
s

xszðqj ,NjÞε21
kðnjsÞ 2 Rsnjs

� �
ds,

subject to ð
s

njs ds ≤ Nj:
21 In one dimension (d 5 1), k0ð0Þ 5 2
Ð ∞
0 tðdÞ12ε dd < ∞. In two dimensions (d 5 2),

k0ð0Þ 5 Ð ∞
0 tðdÞ12ε2pd dd < ∞.
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Letting lj be the multiplier on the constraint, the first-order condition
with respect to njs is given by

xsz
ε21
j k0ðnjsÞ ≤ Rs 1 lj , with equality if njs > 0, (4)

where we use zj as shorthand for z(q j, Nj). The first-order condition with
respect to Nj is

lj 5 2
d½zðqj ,NjÞε21�

dNj

ð
s

xskðnjsÞ ds: (5)

The productivity of the firm declines with its span of control, as measured
by the total number of plants, Nj. Hence, lj can be interpreted as themar-
ginal span-of-control cost for the firm. It amounts to an additional shadow
fixed cost, on top of the explicit fixed costRs, of operating onemore plant
in location s.
Since k is strictly concave, equation (4) implies that njs is increasing in xs

and zj anddecreasing inRs andlj;Rs 1 lj comprise a plant’s effective fixed
cost. Naturally, higher effective fixed costs induce the firm to operate
fewer plants in a location. The firm trades off this effective fixed cost
against the gains from increasing the efficiency of distribution: more
plants implies that, on average, customers will be closer to the plants.
Larger xs or zj imply larger gains from a reduction in average distance, in-
ducing the firm to operate more plants in the location.
To characterize the solution to this problem, it is useful tomake the fol-

lowing assumption on the productivity function z(q, N ).
Assumption 2. zðq,N Þ 5 qΞðN Þ, where Ξ is a log-concave function.
Using the first-order conditions in equation (4), together with this as-

sumption, we can show that firms with higher endogenous productivity
have higher marginal span-of-control costs of increasing the number of
plants, lj, even relative to their firm-specific profitability, zε21

j .22

Lemma 4. Consider two firms with z1 < z2. Then, either l1=zε21
1 <

l2=zε21
2 or N1 5 N2 5 0.

Proof. Since k is concave, the density of plants is a decreasing func-
tion of ðRs 1 ljÞ=xszε21

j . Suppose that l1=zε21
1 ≥ l2=zε21

2 . Then, in every
market ðRs 1 l1Þ=xszε21

1 > ðRs 1 l2Þ=xszε21
2 . Therefore, n1s ≤ n2s, with a

strict inequality whenever n2s > 0. If N2 > 0, then N2 > N1, and the log
concavity of z with respect to N, along with k0 > 0, implies that

l1

zε21
1

5 ðε 2 1Þ2zN ðq1,N1Þ
zðq1,N1Þ

ð
s

xskðn1sÞ ds < ðε 2 1Þ2zN ðq2,N2Þ
zðq2,N2Þ

ð
s

xsk n2sð Þ ds

5
l2

zε21
2

,

a contradiction. If N2 5 0, then N1 5 0. QED
22 Log concavity ensures that 2zN ðq,N Þ= 2zðq,N Þ is nondecreasing.
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Our next result uses lemma 4 to prove that more productive firms set
up relatively more plants in locations with higher rents.
Proposition 5. Consider two firms with z1 < z2. Let R*ðz1, z2Þ be the

unique rent that satisfies

R*ðz1, z2Þ 1 l2

R*ðz1, z2Þ 1 l1

5
z ε21
2

zε21
1

:

Then, Rs > R*ðz1, z2Þ implies that n2s ≥ n1s, with strict inequality if n2s > 0;
Rs < R*ðz1, z2Þ implies that n1s ≥ n2s, with strict inequality if n1s > 0; and
Rs 5 R*ðz1, z2Þ implies that n1s 5 n2s.
Proof. To start, z2 > z1 implies that l2 > l1 and l2=z ε21

2 > l1=z ε21
1 .

Therefore, ðR 1 l2Þ=ðR 1 l1Þ > 1, so ðz ε21
1 =z ε21

2 Þ½ðR 1 l2Þ=ðR 1 l1Þ� is
strictly decreasing in R. Since limR → 0ðz ε21

1 =z ε21
2 Þ½ðR 1 l2Þ=ðR 1 l1Þ� 5

ðl2=z ε21
2 Þ=ðl1=z ε21

1 Þ > 1 and limR →∞ðz ε21
1 =z ε21

2 Þ½ðR 1 l2Þ=ðR 1 l1Þ� 5 zε21
1 =

zε21
2 < 1, there is a unique R* such that ðz ε21

1 =z ε21
2 Þ½ðR 1 l2Þ=ðR1

l1Þ� 5 1. If R s > R*ðz1, z2Þ and n2s, n1s > 0, then k0ðn2sÞ 5 ðRs 1 l2Þ=
zε21
2 xs < ðRs 1 l1Þ=zε21

1 xs 5 k0ðn1sÞ, and since k0 is decreasing, n2s > n1s. If
n2s > 0 and n1s 5 0, then of course n2s > n1s. If n2s 5 0, then k0ð0Þ ≤
ðRs 1 l2Þ=z ε21

2 xs < ðRs 1 l1Þ=zε21
1 xs, which implies that it is optimal for

n1s 5 0. The argument for Rs < R*ðz1, z2Þ is identical. The argument
for R 5 R*ðz1, z2Þ is trivial. QED
Proposition 5 states that for two firms with different productivities,

there is a cutoff level of rent such that the firm with higher productivity
places more plants in locations with higher rent and the firm with lower
productivity places more plants in locations with lower rent. Thus, even
while the two firms have overlapping footprints, there is a clear pattern
of sorting. Figure 7 provides a graphical representation of this result.
The type of sorting implied by proposition 5 stands in sharp contrast to

workhorse models of trade and multinational production in which the
more marginal locations are reached by the most productive firms.23

Here, it is the less productive firms that go to the lower-rent locations.
Why the difference?
Consider first locations with the cutoff level of rent where twofirmswith

different productivities choose to place the same number of plants. Firms
balance the marginal profit from an additional plant, xszε21

j k0ðnjsÞ, against
the effective fixed cost of a new plant,Rs 1 lj , which depends on the local
rent and theproductivity penalty arising from the larger span of control of
managers. The higher-productivity firmearnsmore profit per plant in the
location but chooses not to open more plants because of its higher mar-
ginal span-of-control costs (as shown in lemma4). At locationswith higher
rent, the higher rent deters the lower-productivity firm fromplacingmany
23 See, e.g., Melitz (2003), Eaton and Kortum (2002), and Ramondo and Rodríguez-
Clare (2013).
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plants, but it has a smaller impact on the higher-productivity firm’s effec-
tive fixed costs. Hence, the higher-productivity firm places relativelymore
plants in these high-rent locations. Formally, since d lnðRs 1 ljÞ=d ln Rs

is decreasing inlj, the effective fixed cost of setting up a plant rises propor-
tionally less with rents for the high-productivity firm. A parallel argument
implies that a lower rent induces the lower-productivity firm to placemore
plants, while the largemarginal span-of-control cost of the high-productivity
firm limits its presence.24 Most models of plant location decisions in the
literature do not feature span-of-control costs, and so this sorting implica-
tion is absent.25

The results above condition on firms with a positive density of plants
in particular locations. Our next result shows that, for any given location,
there is a productivity threshold such that firms with productivity below
FIG. 7.—Location of plants of a high-productivity and a low-productivity firm.
24 In the baseline model, a plant requires a fixed amount of space, and production uses
only labor. Thus, a plant’s fixed cost depends on the local rent, and its variable cost de-
pends on the local wage. If both a plant’s fixed cost and its production of output used (pos-
sibly different) bundles of labor and floor space, firms would still sort across locations.
However, rather than sorting according to rent, they would sort according to the cost of
the fixed-cost input bundle. That is, larger firms would place plants in locations in which
the fixed-cost input bundle was more expensive.

25 We can also show that themarginal efficiency of distribution of more productive firms is
relatively smaller inhigher-rent locations.Hence, inhigher-rent locations, higher-productivity
firms saturate themarket relativelymore, and the cannibalization between plants is larger.We
relegate the formal statement of these additional results to app. A.4.
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the threshold do not set up plants in that location. Under further restric-
tions on the span-of-control costs, there is another threshold such that
firms with high enough productivity do not set up plants there either.
That is, when all conditions are satisfied, only plants with productivities
between these thresholds set up plants in a given location.
Proposition 6. If limd→∞ðdd=tðdÞε21Þ 5 0, for any location s, there

exists a productivity threshold zs > 0 such that njs 5 0 if zj < zs. If
limz→∞ðlj=zε21Þ 5 ∞, then there exists an additional threshold �zs < ∞
such that njs 5 0 if zj > �zs:
Our final result in this subsection refers to the total size of firms. The

results above condition on a firm’s productivity. However, empirically
it is easier to condition on other firm observables, such as their total em-
ployment size or the total number of plants. We do not have a result that
the total number of plants is increasing in firm productivity. Not only
do firms sort their plants across locations, but their optimal plant size
varies, depending on local characteristics. However, under particular
parametric assumptions on a firm’s productivity function, and if wages
are constant across space, we can show that more productive firms em-
ploy more workers.26 We let Lj denote the total number of workers of
firm j.
Lemma 7. Suppose that zðq,N Þ 5 qe2N =j and that local wages are

constant across locations at W. Consider two firms with z1 < z2; then, ei-
ther L1 < L2 or L1 5 L2 5 0.
III. Industry Equilibrium
We now proceed to embed the problem of the multiplant firm that we
studied in the previous section into an industry equilibrium. We do so
for a single “small” industry in the context of a full spatial equilibrium,
of which we do not specify the details.27 In particular, we are interested
in how competition among firms interacts with the sorting of firms across
space. After describing the industry equilibrium, we study two compara-
tive statics: a relaxation of the span-of-control cost (perhaps driven by ad-
vances in information and communication technologies) and a reduction
in transportation costs. We study the implications of these technological
26 The assumption of equal local wages is consistent with the general equilibrium frame-
work in sec. 3 of Oberfield et al. (2020).

27 It is straightforward to embed the industry equilibrium into a full spatial equilibrium
framework. This can be done in a number of ways. In one example, spelled out explicitly in
Oberfield et al. (2020), each location is characterized by exogenous amenities in addition
to productivity, people are freely mobile across locations, and land can be used for housing
or commercial real estate. We can also accommodate further agglomeration and conges-
tion forces or impediments to mobility. Of course, other alternative general equilibrium
setups could work as well.
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developments when the change occurs in that industry only.Hence, in the
comparative-statics exercises, we keep rents and wages fixed, which im-
plies that firms within an industry interact exclusively through the local
industry price index. The exercises illustrate the relevance of transport
costs and span-of-control costs in the limit economy and allow us to speak
to the type of changes in sorting documented by Rossi-Hansberg, Sarte,
and Trachter (2021) and Hsieh and Rossi-Hansberg (2022).28

There are Ls workers in location s with Cobb-Douglas preferences
across industry aggregates from a unit continuum of industries indexed
by q ∈ ½0, 1�. Consistent with assumption 1, each industry aggregate is a
Dixit-Stiglitz bundle of the varieties jproducedby all firms in that industry,
Jq, with elasticity of substitution across varieties ε.29 Thus, if Isq is the total
expenditure on the industry aggregate for industry q in locations s, the re-
sidual demand curve facing firm j ∈ Jq is IsqP ε21

sq p2ε
j , where the price index

for industry q is Psq ; ðÐj∈Jqp12ε
js djÞ1=ð12εÞ. Aggregating across firms, we can

characterize a location’s industry price index.30

Proposition 8. In the limit when Δ→ 0, the local price index for in-
dustry q is Psq 5 ½ε=ðε 2 1Þ�ðWs=BsZsqÞ, whereZsq ; ðÐj∈Jqzε21

j kðnjsÞdjÞ1=ðε21Þ.
Note that industry productivity in a location, Zsq, is the CES aggregate

of the firms’ effective productivities, zj, with the weight on a firm’s produc-
tivity given by its local efficiency of distribution, k(njs). Then, the local
price index is just the standard CES markup times the “aggregate” local
marginal cost.31
A. Numerical Illustration of an Industry Equilibrium
To illustrate more concretely some of the equilibrium implications of our
theory, we now specify all relevant functional forms and distributions and
solve for an equilibrium of the model numerically. Our parameterization
is intended to make the relevant forces visually clear and transparent.
Let transportation costs take the form tðd; fÞ ; tðd= ffiffiffi

f
p Þ, where f in-

dexes the efficiency of transportation (i.e., a higher f implies lower trade
28 We are well positioned to study this question relative to existing models of plant loca-
tion that either have no span-of-control cost (Ramondo and Rodríguez-Clare 2013 and
Tintelnot 2017) or limit a firm’s location to a single plant (Gaubert 2018; Ziv 2019).

29 For simplicity, we abstract from firm entry and hold the set of firms fixed in our
comparative-statics exercises.

30 In app. A.5, we determine other aggregate properties of the industry equilibrium
when Δ→ 0.

31 We have not been able to show the existence or uniqueness of the type of equilibrium
we desire. The main holdup is that we have not been able to show that the industry price in-
dex in the limiting economy is continuous. While we strongly suspect that this is the case—
individual firms have incentives to place plants where other firms have not—we have no for-
mal proof. We hope that future work can improve on this.
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costs for a given distance traveled, d). This implies that kðn; fÞ ; kðfnÞ.32
Weparameterize transportation costs as tðd= ffiffiffi

f
p Þ 5 ed=

ffiffiffi
f

p
.We setf 5 0:04.

Firms’ productivity is given by zðq,N Þ 5 qe2N =j, where j indexes the effi-
ciency of a firm’s span of control (i.e., a higher j implies a higher z for
the same aggregate size of the firm, N ). We set j 5 1. Finally, we posit a
one-to-onemapping between locations’ total expenditure on the industry
Isq and rentRs; that these expenditures are distributed according to a trun-
cated Pareto distribution; and that the distribution of firm productivities
q j is also given by a truncated Pareto distribution.33

We first describe the baseline industry equilibrium and then proceed to
study comparative-static exercises with respect to j and f. Appendix F de-
scribes the numerical algorithm that solves the industry equilibrium. Fig-
ure 8 presents the distribution of plants, njs, and sales, ðε 2 1Þzε21

j xskðnjsÞ,
for three representative firms: a firmwith the lowest productivity, q 5 0:1;
a firm with intermediate productivity, q 5 1; and a firm with the highest
productivity, q 5 10. As implied by proposition 5, for any pair of firms,
there exists an income threshold (or, equivalently, a rent threshold, since
rents are monotone in income) such that the more productive of the two
firms sets up more plants above the threshold and fewer plants below. In
our example, the most productive firm operates many plants in middle-
income locations and fewer plants in very high-incomeor very low-income
locations (the case of q 5 10 in the left-hand panel of fig. 8). In fact, it
operates no plants in the lowest-income locations. The logic should be
clear; rents in high-income locations are high, which encourages high-
productivity firms to economize on plants at the cost of having lower effi-
ciency of distribution, k(njs). As shown in the right-hand panel of figure 8,
they compensate with higher sales from each plant, which results in higher
total sales. Low-income locations, in contrast, are less attractive to large
firms, since their shadow cost of setting up an additional plant is high, given
the productivity penalty that arises from their larger span of control (lj is
increasing in q j). Again, thesefirms compensatewithhigher sales fromeach
plant. Firms with lower productivity then take advantage of low-rent loca-
tions, given their lower span of control and the lack of competition from
top firms in those locations.
32 Note that f is defined so that it enters the function t as
ffiffiffi
f

p
, while it enters the func-

tion k linearly. The reason for the discrepancy is that the function k is constructed from an
integral over a two-dimensional space.

33 Expenditure in location s, Is, is distributed truncated Pareto, so that the measure
of locations with income weakly less than I is ½1 2 ðI=I Þ2xI �=½1 2 ð�I=I Þ2xI �, with I 5 1,
�I 5 25, and xI 5 2. We set the elasticity of substitution across varieties, ε, to 2. We assume
that the distribution of fundamentals is such that the rent schedule in a location with in-
come Is is given by RðIsÞ 5 e log ðIs Þ

2

. There is a unit measure of firms, and the distribution of
productivity is given by a truncated Pareto distribution so that the measure of firms with
pure productivity no greater than q is ½1 2 ðq=qÞ2xq �=½1 2 ð�q=qÞ2xq �, with q 5 0:1, �q 5 10,
and xq 5 1:25.



plants in space 895
B. Comparative Statics

1. Improvements in an Industry’s
Span-of-Control Technology
Consider the effect of an improvement in the span-of-control technol-
ogy captured by an increase in the parameter j in the firm’s productivity
function, zðq,N Þ 5 qe2N =j. A better span-of-control technology increases
firm productivity and lowers the shadow cost of adding new plants. This
motivates firms to have more plants in more locations. In equilibrium,
the additional entry leads to more local competition, through an in-
crease in Zs at all locations, which makes some firms shrink and others
exit from some, or all, locations.
Figure 9 reproduces figure 8 (the solid lines computed for j 5 1)

and compares it with findings for j 5 3 (dashed lines). In response to
FIG. 9.—Span of control and sorting in an industry equilibrium.
FIG. 8.—Sorting in industry equilibrium.
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the improvement in span-of-control technology, the top firm increases
the measure of plants in low-income locations. It also reduces its pres-
ence slightly in the highest-income markets because of increased com-
petition. The middle-productivity firm expands its presence in both
lower- and higher-income locations. Holding fixed the actions of other
firms, the lowest-productivity firm would benefit from the improved
span-of-control technology as well. However, increased competition
pushes it to exit all markets. The top firm not only enters lower-income
markets but also, with improved span-of-control technology, ends up out-
selling the medium-productivity firm that already had a presence in
those locations. The ability to manage a greater span of control, there-
fore, results in a net reallocation of sales from low- to high-productivity
firms.
The left-hand panel in figure 10 shows how an improved span-of-

control technology affects the shadow cost of additional plants, lj. As ar-
gued above, lj declines following the direct effect of the technological
change. The effect is clearly magnified for high-productivity firms. These
firms benefit most, since their better technology makes them want to ex-
pand more extensively in space and thus makes them benefit dispropor-
tionately from a technology that renders such an expansion less costly.
The right-hand panel in figure 10 shows the effect of the span-of-control
technology on local profitability, xs. Increased competition lowers the lo-
cal price index, particularly in low-income locations, which, in turn, low-
ers local profitability. These are the locations where top firms expand
and where they now compete with lower-productivity firms. Although
the total number of plants increases everywhere, low-income locations
exhibit the largest increase in the number of plants.
FIG. 10.—Effect of improvements in span-of-control technology on lj and xs.
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2. Improvements in an Industry’s
Transportation Costs
Consider the effects of an improvement in transportation technology cap-
tured by an increase in f in the transportation cost function, tðdÞ 5 ed=

ffiffiffi
f

p
.

An increase in transportation efficiency reduces the cost of reaching cus-
tomers and so incentivizes firms to have fewer plants with larger catch-
ment areas. Having fewer plants implies lower managerial cost associated
with firms’ span of control, which in turn increases productivity and in-
duces firms to expand. The larger catchment areas effectively reduce
the (fixed) rent costs of serving consumers in a location, which encour-
ages the entry of all firms in more markets but particularly incentivizes
the entry of less productive firms. Furthermore, lower transport costs
imply more cannibalization among plants. This effect is particularly rele-
vant for high-productivity firms, since they operate more plants. Hence,
we expect improvements in transport efficiency to disproportionately
benefit low-productivity firms. The incentives to entermore locations with
fewer plants imply that competition at the local level increases every-
where, as reflected by an increase inZs. This countervailing force reduces
firms’ sales in some locations.
Figure 11 shows the effect of an increase in f from 0.04 to 0.4 on the

mass of plants and sales of the representative high-, medium-, and low-
productivity firms discussed above. The left-hand panel shows that all
firms expand to new locations but also have fewer plants inmost locations
where they were already present. The top firm expands to low-income lo-
cations and now sells everywhere, while themedium- and low-productivity
firms expand to higher-income locations. The increase in competition im-
plies that profitability, xs, declines almost uniformly across markets. As the
right-hand side of figure 11 shows, increased competition implies that all
FIG. 11.—Transportation efficiency and sorting in an industry equilibrium.
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three firms see their sales fall in many of the markets where they were
operating.
While the improvement in transport technology leads firms to expand

the range of locations in which they are active, they also have fewer plants.
The effect on the total number of plants, therefore, is ambiguous. In this
simulation, the total measure of plants falls in both low- and high-income
markets. However, it increases in middle-incomemarkets, as a large num-
ber of lower-productivity firms now choose to enter these markets. Over-
all, the improvement in transport costs favors low-productivity firms. Fig-
ure 12 shows that improvements in transportation technology lead total
sales to increase for the lowest-productivity firms while total sales by the
top firms decline.
IV. Empirical Evidence
Our theory provides a number of concrete implications about the loca-
tion of plants in space for industries that can be approximated by our limit
economy. In this section, we contrast its implications on sorting and the
FIG. 12.—Effect of improvements in transportation efficiency on total firm sales.
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role of spanof control withUS evidence.Ourmain source of data isNETS,
which is provided by Walls & Associates. NETS provides yearly employ-
ment information for “lines of business,” which we associate with plants
in the theory and refer to as “plants” or “establishments” in the remainder
of the paper.34 For each establishment, we know its geographic coordi-
nates, its industry classification, and its parent company.35 We classify in-
dustries according to the SIC8 (8-digit standard industrial classification)
industry classification, with over 18,000 distinct industries. We are inter-
ested in exploring how firms place their plants across space. To do so,
we require a consistent definition of a “location.” We follow Holmes and
Lee (2010) and divide the continental United States into squares with side
lengths of M miles. We present results for values of M ranging from 3 to
48 miles.
In order to contrast the theory’s predictions with the data, we first

need to map firm productivity and location characteristics to observ-
able measures in the data. In lemma 7, we show that firm total national
employment in a given industry is strictly increasing in its productivity.
We can measure a firm’s total employment directly in the data.36 We can
easily measure each location’s population density in the data (since all
locations are squares with the same area) and then use this metric to rank
locations.
We have characterized the model’s predictions for the limit economy.

While the underlying forces we underscore—such as transport costs, span
of control, and cannibalization—are likely relevant for any multiplant
firm, the predictions of our theory are guaranteed to hold only in the limit
economy. This limit is likely a better approximation for firms that setmany
plants across locations. Thus, when assessing the model’s predictions, we
34 The definition of a line of business is almost identical to the definition of an establish-
ment or plant (which we use as synonyms). Although it is conceivable in principle that an
establishment may contain one or more lines of business, in practice almost all plants have
a single line of business. Thus, we refer to a line of business as a plant. For those cases
where two lines of business are present in the same exact location, and thus in the same
plant, each line of business is identified as a single plant.

35 A more detailed description of NETS can be found in Rossi-Hansberg, Sarte, and
Trachter (2021). We use only a cross section of NETS for 2014. Compared to census data,
a cross section in NETS has an excess of very small firms, partly because it keeps track of
nonemployee firms. Thus, we restrict our attention to firms with at least five employees.
Crane and Decker (2019) observes that NETS has imputed employment data. Once we re-
strict to firms with at least five employees, the fraction of plants with nonimputed employ-
ment is 81.5%. In apps. C–E, we show that our empirical findings regarding sorting and
span of control are robust to using only the nonimputed data.

36 In our data, employment is better measured than revenue. Note also that, in our data,
franchises are listed as separate firms. We hope that future research can explore how span-
of-control considerations are affected or relaxed by contracting arrangements such as fran-
chise agreements.
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do so both using all industries and also restricting attention to industries
in which plant catchment areas tend to be small, such as services.37
A. Sorting in the Data
A central and distinctive prediction of our model is that more productive
firms sort toward “better” locations.Ourmain results related to sorting are
presented in proposition 5. This proposition establishes that more pro-
ductive firms set up relatively more plants in locations with higher land
rents. We do not observe local rents in the NETS data. However, using
alternative data sources, it is clear that there is a very tight positive rela-
tionship between rents and our ordering of locations using population
density. Figure B.1, in appendix B (figs. B.1 and G.1 are available online),
shows the relationship for zip codes and counties, using American Com-
munity Survey data to estimate densities and Zillow data to compute rents.
Hence, inwhat follows, we use populationdensity as ameasure of the local
characteristics on which firms sort.
As in the theory, let Ls denote population density in location s. The

average density of the locations of a firm j, �Lj , is the average of the loca-
tion density, Ls, across all of the firm’s plants. Once we compute �Lj , we
subtract industry fixed effects. We use the residuals as our measurement
of a firm’s average density of its locations. The results below are robust to
constructing �Lj using a weighted average, where the weights are based on
total employment in the plant’s location.
Figure 13 shows that the relationship between ln �Lj and ln Lj is roughly

linear when we restrict attention to firms with national size in an industry
greater than 10 employees. Hence, in table 1 we estimate a linear relation-
ship and show that, indeed, the relationship between a firm’s log average
location density and its log national employment size is positive and signif-
icant, after controlling for industry fixed effects. The table also presents
a selected set of robustness checks. The implication of the theory holds
robustly in the data: bigger firms sort toward dense locations. Column 2
of table 1 confirms the same finding when we look at a larger spatial res-
olution, M 5 48, although the coefficient is smaller, probably because
of spatial averaging across markets.
The implications we derived from the limit problem where transport

costs are large and span-of-control and fixed costs are small should de-
scribe particularly well the behavior of firms that choose to set up many
plants or that operate in industries inwhich trade costs arehigh.Column3
of table 1 shows that the sorting pattern is indeed present and strongly sig-
nificant when we limit the sample to firms with 100 or more plants, even
37 In app. H, we show, for a numerical example, that the limit predictions derived from
our model hold well for simulated plant locations when Δ is small but may fail when Δ is
large and firms set up very few plants across space.
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though it reduces the sample size tremendously.Column4 restricts the sam-
ple to industries that have at least onefirmwith at least 100 plants andfinds
an even steeper positive relationship, which is again highly significant. Fi-
nally, the sorting patternwehave uncovered could arise fromomitted char-
acteristics of firms that are correlated with density. For example, if firms
tend to set up plants where they are founded and denser locations incu-
bate more productive firms, we would obtain a positive relationship be-
tween average firm density and total firm employment.38 We address this
concern by examining sorting patterns among firms with the same head-
quarters locations. As shown in column 5 of table 1, the positive relation-
ship between total firm employment and the average employment density
of the firm’s plant locations is robust to the inclusionof fixed effects for the
firm’s headquarters locations for firms with more than 100 plants.
Table V, in appendix C (tables V–X are available online), shows many

more variations of these results, using different thresholds and selection
criteria. All of them show similar findings. In addition, we implement a
FIG. 13.—Sorting: firm size and local density. For each firm, we calculate the log of av-
erage employment density across all of the firm’s plants (we use M 5 12). Then, we sub-
tract industry fixed effects and collect the residuals. Finally, we fit a kernel-weighted local
regression of the residuals on the log of total firm employment. The regression shown in
the figure uses a zero-degree polynomial (local-mean smoothing) and the bandwidth that
minimizes the conditional weighted mean integrated squared error. The shaded area indi-
cates the 95% confidence interval.
38 See Walsh (2019) for a recent study of firm entry across locations.
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leave-out strategy to address the potential concern that the firm’s presence
could be driving local density. The resulting sorting is virtually identical.
We also present results when we limit the sample to plants with nonim-
puted employment data, as well as using alternative weights.
Table 2 presents the estimated elasticity of firm average location den-

sity to firm national employment by major industrial sector. As discussed
TABLE 1
Sorting: Firm Size and Local Density

ln �Lj

Baseline Firms with
≥100 Plants

Industries in
Which Largest Firm
Has ≥100 Plants

HQ FE, Firms
with ≥100 Plants

(1) (2) (3) (4) (5)

ln Lj .165*** .0952*** .146*** .172*** .0791**
(.000975) (.000848) (.0249) (.00164) (.0350)

Observations 3,670,994 3,673,053 876 1,387,742 652
R 2 .139 .099 .384 .080 .664
SIC8 FE Yes Yes Yes Yes Yes
HQ location
FE No No No No Yes

M 12 48 12 12 12
Note.—The table presents the results of regressing the log of the average employment
density across all of the firm’s plants on the log employment of the firm at the national level
and industry fixed effects (FE). Column 1 presents the baseline results with M 5 12. Col-
umn 2 shows the baseline results withM 5 48. Column 3 restricts the analysis to firms with
at least 100 plants. Column 4 restricts the analysis to industries where there is a firm with at
least 100 plants. Column 5 adds the headquarters (HQ) location FE for each firm to the case
where we restrict to firms with at least 100 plants. Robust standard errors are in parentheses.
** p < .05.
*** p < .01.
TABLE 2
Sorting by Major Industry

ln �Lj

All Manufacturing Services Retail Trade FIRE
(1) (2) (3) (4) (5)

ln Lj .165*** .0523*** .160*** .150*** .234***
(.000975) (.00272) (.00153) (.00247) (.00320)

Observations 3,670,994 274,478 1,479,391 856,860 244,048
R 2 .139 .192 .097 .068 .122
SIC8 FE Yes Yes Yes Yes Yes
M 12 12 12 12 12
Note.—The table presents the results of regressing the log of the average employment
density of each location, weighted by the number of establishments of a particular firm op-
erating in a particular industry in the location, on the log employment of the firm at the
national level and industry fixed effects (FE). Column 1 presents the baseline case for all in-
dustries, and the rest of the columns present results by major sector. Robust standard errors
are in parentheses.
*** p < .01.
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above, the limit problem we study is likely a better approximation of the
problem of firms that sell goods and services at short distances. Broad in-
dustry classifications do not provide an ideal grouping of industries ac-
cording to their tradability. Nevertheless, it is probably the case that firms
in industries within, say, retail trade sell services that are less tradable than
firms in industries within manufacturing. Table 2 shows that the elas-
ticity of firmaverage location density with respect to firmnational employ-
ment is, in fact, smaller in manufacturing than in other sectors. We find
the highest elasticities in FIRE (finance, insurance, and real estate) and
services.
B. The Largest Firm in Town
We can also explore the implications of proposition 5 on sorting by look-
ing at how the size of the firm with the largest number of plants in each
location, Lj

*
(s), changes with population density,Ls, where j *(s) is the iden-

tity of the firm that places the most plants in s. Sorting implies that, in lo-
cations with low population densities, low-productivity and smaller firms
should place more plants than large firms. Table 3 shows that, in fact,
the national size of the firm with the most plants in a location increases
with population density, controlling for industry fixed effects. Column 1
presents our baseline case, column 2 the case with 48-mile-square resolu-
tion, column3whenwe restrict the sample tofirmswith at least 100 plants,
TABLE 3
National Size of the Largest Firm in Town

ln Lj*(s)

Baseline Firms with
≥100 Plants

Industries in Which
Largest Firm Has

≥100 Plants
(1) (2) (3) (4)

lnLs .395*** .594*** .131*** .516***
(.00266) (.00461) (.00811) (.00366)

Observations 1,984,474 1,006,305 211,517 616,248
R 2 .616 .644 .554 .600
SIC8 FE Yes Yes Yes Yes
M 12 48 12 12
Note.—The table presents the results of finding the log employment of the firm with the
most plants in an industry and location and regressing its log total employment on the log
density of the location and industry fixed effects (FE), weighted by each industry’s total em-
ployment. In locations where multiple firms are tied for the highest number of plants, we
take the average of the firm size. Column 1 presents the baseline results when M 5 12,
and col. 2 does so forM 5 48. Column3 restricts the analysis to firms with at least 100 plants,
and col. 4 restricts the analysis to industries where there is a firm with at least 100 plants. For
population density, we use the data from the 2010 decennial census, taken from Manson
et al. (2021). Robust standard errors are in parentheses.
*** p < .01.
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and column 4 when we restrict the sample to industries that have at least
one firm with 100 or more plants. In all cases, the slope is positive and
highly significant.
Table VI, in appendix D, presents a large set of robustness checks, in-

cluding different thresholds for sample selection and results for major in-
dustry groupings, as well as additional spatial resolutions and an exercise
with only nonimputed data. In the analysis presented in table 3, there are
locations in which multiple firms tie for the highest number of plants.
In those cases, we use the average national firm size among these firms.
In table VI, we also show that our finding is robust to dropping cases with
ties or to using thenational size of the largest firmamong those tied. Finally,
one may worry that the largest firm in a location could be large enough to
mechanically and significantly affect the local employment density. In ta-
ble VI, we show that the results are onlymarginally affectedwhen excluding
the firm’s own contribution when calculating local employment density.
C. The Role of Span-of-Control Costs
In this section, wepresent evidenceon theparticularmechanismdrivingfirm
sorting across locations inourmodel. Lemma4 shows that higher-productivity
firms have a higher cost of increasing their span of control by an additional
plant, lj. As is evident from equation (4), in choosing the number of plants
in a given location, firms trade off these firm-specific fixed costs against
profits per plant, which are increasing in a firm’s productivity. This trade-
off implies that two firms present in the same location, but with different
productivity, might decide to have the same number of plants. However,
the firm with higher productivity will always have larger plants. Hence, a
testable prediction of this mechanism is that, among firms with the same
number of plants in a given location, the plants operated by the more pro-
ductive, and therefore nationally larger, firm should be larger.
Formally, we can write the average plant size of firm j in location s as

�ljs 5 ðε 2 1Þzε21
j

xs
Ws

k njs

� �
njs

: (6)

Then, it is straightforward to see that, if zj > z~j , then �ljs > �l~js in locations
wherenjs 5 n~js. Note that, inmostmodels ofmultiplant production, afirm’s
effective productivity in a given location (e.g., its productivity adjusted by the
location’s distance to the firm’s headquarters) determines both the number
of plants and the size of those plants. In contrast to our prediction, this im-
plies that there should be no systematic relationship between firm produc-
tivity and plant size after controlling for the number of plants in a location.
Table 4 presents our estimates of the relationship between log average

plant employment,�ljs, and the log of total firm employment in alternative
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locations, Lf j ,2sg, after controlling for the number of plants and industry-
location fixed effects. To control for the term kðnjsÞ=njs, we use a second-
order polynomial in ln njs. We exclude the location’s employment from a
firm’s total employment in order to avoid a mechanical relationship be-
tweennational firm size and local average plant size. In table VIII, in appen-
dix E, we show that the results are similar if we use a higher-order polyno-
mial to approximate kðnjsÞ=njs or if we calculate a firm’s national size
including the location’s employment. As before, in table 4 we present esti-
mates for different spatial resolutions, as well as for samples where we re-
strict attention to firms with more than 100 plants or to industries that
have such firms. In all cases, the relationship between average plant size
and national firm size is positive and significant, after controlling for the
number of establishments.39
TABLE 4
Span of Control

ln�ljs

Baseline Firms with
≥100 Plants

Industries in Which
Largest Firm Has

≥100 Plants
(1) (2) (3) (4)

ln L{j,2s} .114*** .131*** .275*** .104***
(.000897) (.000962) (.00296) (.000911)

ln njs .137*** .172*** 2.168*** .0720***
(.00897) (.00682) (.0111) (.00883)

(ln njs)2 2.0813*** 2.0811*** 2.00158 2.0564***
(.00447) (.00251) (.00528) (.00431)

Observations 409,364 386,094 126,999 336,424
R 2 .573 .511 .746 .588
SIC8-location FE Yes Yes Yes Yes
M 12 48 12 12
39 These results are
large fraction of the v
of trade. In our mod
within a location. Mo
of trade models relyin
across space within th
tions discussed in Lin
consistent with those in Ferna
ariation of exports in bilateral t
el, this variation maps into var
reover, our empirical findings
g on Pareto distributions to exp
e United States, e.g., the ones t
d and Ramondo (2018).
ndes et al. (2018
rade is through
iation in average
are inconsistent
lain the way firm

hat rely on the di
Note.—The table presents the results of regressing the log of the average plant employ-
ment of a firm within a location on the log national employment of the firm (excluding the
own-firm contribution of employment in a location from that firm’s total employment), in-
dustry fixed effects (FE), and controls for the number of plants that the firm has in the lo-
cation. Column 1 presents the baseline results when M 5 12, and col. 2 does so for
M 5 48. Column 3 restricts the analysis to firms with at least 100 plants, and col. 4 restricts
the analysis to industries where there is a firmwith at least 100 plants. Robust standard errors
are in parentheses.
*** p < .01.
), which finds that a
the intensive margin
plant employment

with the application
s locate their plants
stributional assump-
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V. Conclusions
In this paper, we propose a novel methodology to analyze the problem
of how to serve customers distributed across heterogeneous locations
when firms face transport costs, fixed costs of setting up new plants, and
span-of-control costs of managing multiple plants. Although the basic
trade-off between transport costs and cannibalization is clear, character-
izing the solution to this core problem in economics has proven elusive,
given its complexity. In order to make progress, we propose a limit prob-
lem in which firms choose a density of plants in space. A large combinato-
rial problem is therefore reduced to amuch simpler calculus-of-variations
problem. The solution can be easily characterized, and the problem can
be readily incorporated into a general equilibrium spatial setupwith labor
mobility.
The solution to thefirm’s problemhas a numberof unique predictions.

First, and most important, is that span-of-control considerations imply
that firms sort in space. Specifically, more productive firms operate rela-
tively more plants in locations with higher rents. Less productive firms,
in turn, operate more plants in low-rent locations. Furthermore, condi-
tional on the number of plants, more productive firms operate larger
plants. These and other predictions of the theory are empirically verified
using NETS establishment-level data for 2014 in the United States, both
when we look at all industries and when we restrict the sample to indus-
tries with small catchment areas that might be better approximated by
the limit economy.
The methodology proposed in this paper can readily be used to under-

stand the role of changes in transport infrastructure on plant locations.
We illustrate numerically how firms in a “small” industry—one that does
not affect local rents or wages—adjust by opening fewer plants but in
more locations. We also carry out a similar quantitative exercise to illus-
trate the effects of improvements in the span-of-control technology, where
we see large firms expanding into low-rent markets. Studying general
equilibrium counterfactuals for “large” industries that affect local factor
prices, or for the whole economy, is left for future research. A quantitative
general equilibrium analysis of such changes could be used to study the
implications of secular technological changes for the spatial distribution
of economic activity, as well as local competition and concentration.
These are exciting avenues that our methodology now makes feasible.
Data Availability
Codes to produce all tables and figures in this article, and information
about the proprietary data used can be found in Oberfield et al. (2023),
in the Harvard Dataverse, https://doi.org/10.7910/DVN/FZB46K.
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