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Proofs from Section I

Proof of Lemma 1

By assumption Ct < Yt. Therefore, the resource constraint Yt = Ct + It/qt
ensures It > 0. The capital accumulation equation is K̇t = It − δKt implying

gK =
K̇t

Kt
=

It
Kt
− δ.

On a BGP gK is constant meaning that since It > 0 the growth rates of I and
K must be the same. Thus, gI = gK .

Differentiating the resource constraint and rearranging gives

(gC − gY )
Ct
Yt

+ (gI − gq − gY )
It/qt
Yt

= 0.

Substituting for It/qt
Yt

= 1− Ct
Yt

in this expression and using gI = gK we have

(gK − gq − gC)
Ct
Yt

= gK − gq − gY .

If both sides of this expression equals zero we immediately obtain gY = gC =
gK−gq as claimed in the lemma. Otherwise, since the growth rates are constant
on a BGP it must be that C and Y grow at the same rate implying gY = gC .

But then the resource constraint implies It/qt
Yt

= 1 − Ct
Yt

is constant and, since
gI = gK , this ensures gY = gK − gq. Therefore, the lemma holds.

Proof of Proposition 1

Since factors are paid their marginal products the capital share is θK =
KtFK (AtKt, BtLt, st) /Yt. Note also that because F has constant returns to
scale in its first two arguments FK (AtKt, BtLt, st) = AtF1 (AtKt, BtLt, st) =
AtF1(kt, 1, st) where kt = AtKt/BtLt.

1 Therefore, on a BGP where the capital
share is positive and constant we have2

1To avoid possible confusion, note that we use FK (·) and FL (·) to denote the partial derivatives of
F (·) with respect to K and L, respectively, while F1 (·) and F2 (·) denote the partial derivatives of F (·)
with respect to its first and second arguments, respectively.

2Instead of assuming constant factor shares, this expression can also be obtained by assuming the
rental price of capital Rt declines at rate gq . To see this differentiate Rt = AtF1 (kt, 1, st).
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0 =
θ̇K
θK

= gA + gK − gY +
d logF1 (kt, 1, st)

dt
= γK +

d logF1 (kt, 1, st)

dt
,

where the final equality uses Lemma 1 and γK = gA + gq.

Taking the derivative of F1 and using kF11 + F12 = 0 we have

γK = −F11k̇t + F1sṡt
F1

=
F12

F1

k̇t
kt
− F1sṡt

F1
=

1

σKL

F2

F

k̇t
kt
− F1sṡt

F1
,

where the final equality uses σKL = (F1F2)/(FF12). Since 1− θK = F2/F this
can be rearranged to give

(1) σKLγK = (1− θK)
k̇t
kt
− σKL

F1sṡt
F1

.

To simplify (1) it will be useful to derive an expression for F1s/F1. Note that

(2)
∂

∂K

[
Fs(AtKt, BtLt, st)

FL(AtKt, BtLt, st)

]
=
FKs
FL
− FLKFs

F 2
L

=
FK
FL

(
FKs
FK
− 1

σKL

Fs
F

)
.

Rearranging, we have F1s
F1

= FKs
FK

= FL
FK

∂[Fs/FL]
∂K + 1

σKL
Fs
F . Plugging this into (1)

gives

(3) σKLγK = (1− θK)
k̇t
kt
− σKL

FL
FK

∂ [Fs/FL]

∂K
ṡt −

Fsṡt
F

.

Finally, differentiating the production function Yt = F (AtKt, BtLt, st) yields

gY = θK (gA + gK) + (1− θK) (gB + gL) +
Fsṡt
F

,

= gA + gK − (1− θK)
k̇t
kt

+
Fsṡt
F

.

Using Lemma 1 and γK = gA + gq this implies

γK = (1− θK)
k̇t
kt
− Fsṡt

F
.

Substituting this expression into (3) gives equation (1). This completes the
proof.
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Generalization of Proposition 1

Proposition 1 assumes technical change is factor augmenting, but we can
generalize the proposition by relaxing this restriction. Suppose the production
function is Y = F̂ (K,L, s; t) where technical change is captured by the depen-

dence of F̂ on t. We can decompose technical change into a Harrod-neutral
component and a non-Harrod-neutral residual. Technical change is Harrod-
neutral if, holding the capital-output ratio and schooling fixed, it does not
affect the marginal product of capital (Uzawa 1961). Therefore, we can define
the non-Harrod-neutral component of technical change as the change in the
marginal product of capital for a given capital-output ratio and schooling.

Let ϕ be the capital-output ratio and define κ̂ (ϕ, s; t) by

ϕ =
κ̂ (ϕ, s; t)

F̂ (κ̂ (ϕ, s; t) , 1, s; t)
.

κ̂(ϕ, s; t) is the capital-labor ratio that ensures the capital-output ratio equals
ϕ given s and t. Differentiating this expression with respect to t while holding
s and ϕ constant and using θK = κ̂F̂1/F̂ implies

(4)
κ̂t
κ̂

=
1

1− θK
F̂t

F̂
.

When technical change is Harrod-neutral d
dt log F̂1 (κ̂ (ϕ, s; t) , 1, s; t) =

κ̂t
∂
∂κ̂ log F̂1 + ∂

∂t log F̂1 = 0. Thus, we define the non-Harrod-neutral component
of technical change Ψ by

Ψ ≡ −σKL
[
κ̂t
∂

∂κ̂
log F̂1 (κ̂ (ϕ, s; t) , 1, s; t) +

∂

∂t
log F̂1 (κ̂ (ϕ, s; t) , 1, s; t)

]
.

From this definition we have

Ψ = −σKL

(
F̂11κ̂t

F̂1

+
F̂1t

F̂1

)
,

= −σKL

(
F̂11

F̂1

κ̂

1− θK
F̂t

F̂
+
F̂1t

F̂1

)
,

=
F̂t

F̂
− σKL

F̂1t

F̂1

,(5)

where the second line follows from (4) and the third line uses κ̂F̂11 = −F̂12, the
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definition of σKL and 1 − θK = F̂2/F̂ . Note that in the case where technical

change is factor augmenting we have F̂ (K,L, s; t) = F (AtK,BtL, s) which
implies Ψ = (1− σKL)gA.

Using the expression for Ψ given in (5) we obtain the following generalization
of Proposition 1.

PROPOSITION 3: Suppose the production function is Y = F̂ (K,L, s; t) and
that investment-specific technological progress occurs at constant rate gq. If there
exists a BGP along which the income shares of capital and labor are constant and
strictly positive when factors are paid their marginal products, then

(1− σKL) gq + Ψ = σKL
F̂L

F̂K

∂
[
F̂s/F̂L

]
∂K

ṡ.

To avoid repetition, we omit the proof of Proposition 3 since it follows the same
series of steps used to prove Proposition 1.

Suppose either s is constant as in Corollary 1 or the production function
can be written in terms of a measure of human capital H(L, s, t) implying
∂[F̂s/F̂L]

∂K = 0 as in Corollary 2. Then Proposition 3 implies a BGP with constant
and strictly positive factor shares can exist only if (1−σKL)gq + Ψ = 0. Thus,
a BGP with σKL ≤ 1, gq ≥ 0 and Ψ ≥ 0 is possible only if technical change
that affects the production function is Harrod-neutral and either the elasticity
of substitution between capital and labor equals one or there is no investment-
specific technological change.

Proofs from Section II

Implications of Assumption 1

Taking the partial derivative of the production function with respect to s
gives

Fs = −D
′(s)

D(s)
[bLFL − aKFK ] ,

and from this we obtain

∂

∂K

(
Fs
FL

)
= −D

′(s)

D(s)
a

[
−FK
FL
− KFKK

FL
+
KFKFLK

F 2
L

]
.

Since F exhibits constant returns to scale in K and L we have F = KFK+LFL
and KFKK = −LFLK . Using these results in the expression above we have

∂

∂K

(
Fs
FL

)
= −D

′(s)

D(s)
a
FFLK
F 2
L

(1− σKL) ,
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which is strictly positive under Assumption 1 since a > 0, σKL < 1 and
D′(s) < 0.
F is strictly log supermodular in K and s if and only if FKsF − FKFs > 0.

Using Assumption 1 to compute these derivatives gives

FKsF − FKFs = −D
′(s)

D(s)
(a+ b)LFFLK (1− σKL) .

Since a+ b > 0 and D′(s) < 0 it follows that under the functional form restric-
tion in Assumption 1 the production function F is strictly log supermodular
in K and s if and only if σKL < 1.

Second Order Condition of the Planner’s Problem

The planner chooses zt to maximize Yt which is equivalent to choosing zt to
maximize z−θt h(zt). The first order condition is

−θz−θ−1
t h(zt) + z−θt h′(zt) = 0,

and the second order condition is

(z∗)−θ−1h(z∗)
d

dz
Eh(z∗) < 0.

Since Eh(z) is strictly decreasing in z if and only if σKL < 1 it follows that the
second order condition is satisfied if and only if σKL < 1.

Transition Dynamics of the Planner’s Problem

After solving for optimal schooling we can write the planner’s problem as

max
{ct}

∫ ∞
t0

Nte
−ρ(t−t0) c

1−η
t − 1

1− η
dt

subject to

K̇t = qt [Yt(Kt)−Ntct]− δKt.

where Yt(Kt) is given by (3) with zt = z∗.
Solving this problem we find the planner chooses a consumption path that

satisfies

(6)
ċt
ct

= −ρ+ δ + gq
η

+
θqt
η

Yt(Kt)

Kt
.

Now let Ỹt = e−gY (t−t0)Yt(Kt), C̃t = e−gY (t−t0)Ntct and K̃t = e−gK(t−t0)Kt

where gY is given by part (i) of Proposition 2 and gK = gY +gq. Using (6) and
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the capital accumulation equation together with the fact that qt, At, Bt and
Nt grow at constant rates gq, gA, γL and n, respectively, we have

Ỹt = Ỹ
(
K̃t

)
= Aθt0 (Bt0Nt0)1−θ (z∗)−θ h (z∗) K̃θ

t ,

(7) ˙̃Ct =

[
−gY + n− ρ+ δ + gq

η
+
θqt0
η

Ỹ (K̃t)

K̃t

]
C̃t,

(8) ˙̃Kt = −(gY + gq + δ)K̃t + qt0

[
Ỹ
(
K̃t

)
− C̃t

]
.

Since consumption and schooling can jump, Kt (or, equivalently K̃t) is the
economy’s only state variable. The pair of differential equations (7) and (8)
govern the evolution of the economy from any initial condition Kt0 .

Figure 3 depicts a familiar phase diagram. The vertical line labeled CC has
K̃ = K̃∗ such that

Ỹ (K̃∗)

K̃∗
=

1

θqt0
[η (gY − n) + ρ+ δ + gq] .

From (7), we see that ˙̃Ct = 0 along this line. The curve labeled KK has
C̃ = Ỹ (K̃)−(gY +gq+δ)K̃/qt0 . This curve, which from (8) depicts combinations

of C̃ and K̃ such that ˙̃Kt = 0, can be upward sloping (as drawn) or hump-
shaped. In either case, the two curves intersect on the upward sloping part of
KK.3 The intersection gives the unique steady-state values of K̃ = K̃∗ and
C̃ = C̃∗, which in turn identify the unique BGP. As is clear from the figure, the
BGP is reached by a unique equilibrium trajectory that is saddle-path stable.

Alternative Formulation of Assumption 1

Proposition 4 provides an alternative formulation of Assumption 1 that can
be used whenever the marginal product of schooling is positive as guaranteed
by part (i) of Assumption 2.

PROPOSITION 4: Assumption 1 holds with Fs(AK,BL, s) > 0 if and only if
the production function can be written as

F (AK,BL, s) = (BL)
a
a+b G

[
AK,D(s)−(a+b)BL

] b
a+b

3To see this, note that Ỹ ′
(
K̃t
)

= θ
Ỹ (K̃t)

K̃t
. Consequently, the slope of the KK curve is θ

Ỹ (K̃t)

K̃t
−

gY +gq+δ

qt0
which is positive when K̃ = K̃∗ by part (iii) of Assumption 2.
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Figure 3. Transitional dynamics and stability of the balanced growth path

with a, b > 0, where G(·) is constant returns to scale, strictly increasing in both
its arguments and

(i) G(z, 1) is twice differentiable, and strictly concave for all z;

(ii) σGKL ≡ GLGK/GGKL < 1.

PROOF:

Suppose Assumption 1 holds with Fs > 0 and define

G
[
AK,D(s)−(a+b)BL

]
=
[
D(s)−(a+b)BL

]−a
b
F̃
[
AK,D(s)−(a+b)BL

]a+b
b
.

This definition implies G(·) is constant returns to scale and

F (AK,BL, s) = F̃
[
D(s)aAK,D(s)−bBL

]
= (BL)

a
a+b G

[
AK,D(s)−(a+b)BL

] b
a+b

.

Differentiating G(·) yields
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GK =
[
D(s)−(a+b)BL

]−a
b a+ b

b
F̃
a
b F̃K > 0,

GL =
[
D(s)−(a+b)BL

]−a
b 1

bL
F̃
a
b

[
(a+ b)LF̃L − aF̃

]
.

Fs > 0 implies bLF̃L − aKF̃K > 0. Using this result together with F̃ =
KF̃K + LF̃L gives GL > 0.

Next, observe that G(z, 1) = F̃ (z, 1)
a+b
b . Therefore

Gzz(z, 1) =
a+ b

b
F̃ (z, 1)

a
b
−1
[
F̃ (z, 1)F̃zz(z, 1) +

a

b
F̃z(z, 1)2

]
.

This expression is negative since zF̃zz(z, 1) = −F̃z2(z, 1), bF̃2(z, 1)−azF̃z(z, 1) >
0 because Fs > 0 and σKL < 1. It follows that G(z, 1) is twice differentiable,
and strictly concave for all z.

Finally, we have

GKL =
[
D(s)−(a+b)BL

]−a
b a+ b

b
F̃
a
b

[
F̃KL +

a

b

F̃K F̃L

F̃
− a

b

F̃K
L

]
,

meaning

σGKL =
F̃K F̃L + a

b F̃K F̃L −
a
b
F̃ F̃K
L

F̃ F̃KL + a
b F̃K F̃L −

a
b
F̃ F̃K
L

,

which is less than one since σKL < 1.
The converse can be proved in the same manner after defining

F̃
[
D(s)aAK,D(s)−bBL

]
=
[
D(s)−bBL

] a
a+b

G
[
D(s)aAK,D(s)−bBL

] b
a+b

.

This completes the proof.

Necessity of Functional Form

Consider an economy that satisfies the assumptions required for Lemma 1
to hold and has production function F (K,L, s; t) which is constant returns
to scale in its first two arguments. Suppose factors are paid their marginal
products and schooling is chosen to satisfy

st = arg max
s
F (Kt, Lt, s; t) subject to Lt = D (s)Nt.

We assume this optimization problem has a unique interior maximum.
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Suppose the economy is on a BGP from time T onwards with a constant
capital share θK ∈ (0, 1). With a slight abuse of notation define F̃ by

F̃ (K,L, s; t) = F̃
[
AtKD (s)a , BtLD (s)−b

]
≡ F

[
AtKD (s)a , BtLD (s)−b , sT ;T

]
,

where b = 1 + aθK/ (1− θK), while At and Bt are defined by

At ≡ egY (t−T )D(st)
−aKT

Kt
,

Bt ≡ egY (t−T )D(st)
bLT
Lt
.

Since a and b jointly satisfy a single restriction, F̃ defines a one dimensional
family of functions.

Differentiating the definitions of At and Bt together with the constraint Lt =
D(st)Nt and using Lemma 1 we obtain

γK ≡
Ȧt
At

+ gq = a(n− gL),

γL ≡
Ḃt
Bt

= gY − n−
θK

1− θK
γK .

γK is the total rate of capital-augmenting technical change, while γL is the
rate of labor-augmenting technical change. When both n and the labor force
growth rate gL are constant then γK and γL are also constant. Also, provided
schooling is increasing over time n > gL implying that a > 0 if and only if γK
is strictly positive.

We can now prove the following proposition. Part (i) shows that on the BGP
F has a one dimensional family of representations of the form

F̃
[
AtKD (s)a , BtLD (s)−b

]
. From the expressions for γK and γL above we

see that each member of this family has a different combination of capital-
augmenting and labor-augmenting technical change. When we say the produc-
tion function can be represented by F̃ we mean that the equilibrium allocation
and the marginal products of capital, labor and schooling on the BGP are
the same under F̃ as under F . However, this does not imply that counterfac-
tual experiments using F̃ will necessarily coincide with counterfactuals under
F . The first order impact of some policy changes (e.g., schooling subsidies,
capital taxation) depends on σKL and σKs ≡ (FKFs)/(FKsF ). Therefore, in
part (ii) of the proposition we show that if σKL is constant on the BGP then
σKL = σ̃KL ≡ (F̃K F̃L)/(F̃KLF̃ ) and that σ̃Ks ≡ (F̃K F̃s)/(F̃KsF̃ ) can be writ-
ten as a function of σ̃KL, a and b. Consequently, if σKL and σKs are constant
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on the BGP then there exist unique values of a and b such that σ̃KL = σKL
and σ̃Ks = σKs. Thus, knowing σKL and σKs is sufficient to separate the roles
played by capital-augmenting and labor-augmenting technical change. More-
over, when a and b are chosen appropriately counterfactual analysis using F̃
instead of F will, to a first order, give accurate predictions.

PROPOSITION 5: Suppose for all t ≥ T the economy’s equilibrium trajectory
{Yt,Kt, Lt, st} is a BGP with constant and strictly positive factor shares. On the
BGP

(i) The production function F can be represented by F̃ in the sense that for all
t ≥ T

F̃ (Kt, Lt, st; t) = F (Kt, Lt, st; t) ,

F̃K (Kt, Lt, st; t) = FK (Kt, Lt, st; t) ,

F̃L (Kt, Lt, st; t) = FL (Kt, Lt, st; t) ,

F̃s (Kt, Lt, st; t) = Fs (Kt, Lt, st; t) ;

(ii) σ̃KL and σ̃Ks satisfy

1

σ̃Ks
− 1 = (a+ b)

(
1

σ̃KL
− 1

)
,

and if σKL is constant then σ̃KL = σKL.

PROOF:

Without loss of generality let T = 0. Output at t ≥ 0 is given by

F (Kt, Lt, st; t) = Yt = egY tY0 = egY tF (K0, L0, s0; 0) = F
(
egY tK0, e

gY tL0, s0; 0
)
,

= F
(
AtKtD (st)

a , BtLtD (st)
−b , s0; 0

)
,

= F̃ (Kt, Lt, st; t) .

To show the marginal products of capital are equal, we use the facts that the
capital share is constant over time and capital is paid its marginal product.
Therefore
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KtFK (Kt, Lt, st; t)

Yt
= θK =

K0F1 (K0, L0, s0; 0)

Y0
=
egY tK0F1

(
egY tK0, e

gY tL0, s0; 0
)

egY tY0
,

=
AtKtD (st)

a F1

(
AtKtD (st)

a , BtLtD (st)
−b , s0; 0

)
Yt

,

=
KtF̃K (Kt, Lt, st; t)

Yt
.

Dividing each side by Kt/Yt gives FK (Kt, Lt, st; t) = F̃K (Kt, Lt, st; t). Identi-
cal logic using the labor share gives FL (Kt, Lt, st; t) = F̃L (Kt, Lt, st; t).

To complete the proof of part (i) we show equality of the marginal products
of schooling. Optimal schooling choice implies

D′ (st)Lt
D (st)

= − Fs (Kt, Lt, st; t)

FL (Kt, Lt, st; t)
.

This means the ratio of the marginal product of schooling to output can be
written as

Fs (Kt, Lt, st; t)

Yt
= − (1− θK)

D′ (st)

D (st)
.

We now show that same equation holds for F̃ . Differentiating F̃ with respect
to s and dividing by output gives

F̃s (Kt, Lt, st; t)

Yt
=

1

Yt

D′ (st)

D (st)

[
aAtKtD (st)

a F1

(
AtKtD (st)

a , BtLtD (s)−b , s0; 0
)

−bBtLtD (st)
−b F2

(
AtKtD (st)

a , BtLtD (st)
−b , s0; 0

)]
,

= [aθK − b (1− θK)]
D′ (st)

D (st)
,

= −(1− θK)
D′ (st)

D (st)
.

To prove part (ii) we start by noting that when σKL is constant on the BGP,
the homogeneity of F implies
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σKL =
F1 (K0, L0, s0; 0)F2 (K0, L0, s0; 0)

F12 (K0, L0, s0; 0)F (K0, L0, s0; 0)
,

=
F1

(
egY tK0, e

gY tL0, s0; 0
)
F2

(
egY tK0, e

gY tL0, s0; 0
)

F12 (egY tK0, egY tL0, s0; 0)F (egY tK0, egY tL0, s0; 0)
,

=
F1

(
AtKtD (st)

a , BtLtD (st)
−b , s0; 0

)
F2

(
AtKtD (st)

a , BtLtD (st)
−b , s0; 0

)
F12

(
AtKtD (st)

a , BtLtD (st)
−b , s0; 0

)
F
(
AtKtD (st)

a , BtLtD (st)
−b , s0; 0

) ,
=
F̃K (Kt, Lt, st; t) F̃L (Kt, Lt, st; t)

F̃KL (Kt, Lt, st; t) F̃ (Kt, Lt, st; t)
,

= σ̃KL.

Next define ĥ(z) ≡ F (z, 1, s0; 0). Then we have

F̃ (K,L, s; t) = BtLD(s)−bĥ

[
AtK

BtL
D(s)a+b

]
.

Taking derivatives of this expression implies

σ̃KL =
Eĥ
[
AtK
BtL

D(s)a+b
]
− 1

Eĥ′
[
AtK
BtL

D(s)a+b
] ,

σ̃Ks =

b
a+b − Eĥ

[
AtK
BtL

D(s)a+b
]

b
a+b − 1− Eĥ′

[
AtK
BtL

D(s)a+b
] .

On the BGP we also have

θK =
KtF̃K (Kt, Lt, st; t)

Yt
= Eĥ

[
AtKt

BtLt
D(st)

a+b

]
.

Combining these expressions and using b = 1 + aθK/ (1− θK) we have that on
the BGP

1

σ̃Ks
− 1 = (a+ b)

(
1

σ̃KL
− 1

)
.

This completes the proof.

“Time-in-School” Model

A firm that employs Kt units of physical capital and hires Lt time units from
workers with schooling st at time t produces
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F (AtKt, BtLt, st) = F̃
[
AtKt (1− st)a , BtLt (1− st)−b

]
units of output. The production technology satisfies Assumption 1 and the
parameter restrictions in Assumption 2 also apply. Aggregate output is simply
the sum of the outputs produced by all firms.

Since F (·) has constant returns to scale in its first two arguments we can
define the intensive form production function by f(k, s) ≡ F (k, 1, s) where f (·)
is output per effective unit of labor and k = AtK/BtL is the ratio of effective
capital to effective labor. Using Assumption 1 the intensive form production
function can be written as f(k, s) = (1− s)−bh

[
k(1− s)a+b

]
.

The competitive firms take the rental rate per unit of capital, Rt, and the
wage schedule per unit of time, Wt (s), as given. A firm that hires workers with
education st chooses Lt and kt to maximize BtLt [f (kt, st)− rtkt − wt (st)],
where rt ≡ Rt/At is the rental rate per effective unit of capital and wt (st) ≡
Wt (st) /Bt is the wage per effective unit of labor. Profit maximization implies,
as usual, that

(9) fk (kt, st) = rt

and4

(10) f (kt, st)− rtkt = wt (st) .

We define the functions κ (s, r) and ω (s, r) such that fk [κ (s, r) , s] ≡ r and
ω (s, r) ≡ f [κ (s, r) , s] − rκ (s, r). Then, in equilibrium, kt = κ (st, rt) and
wt (st) = ω (st, rt).

An individual alive at time t who seeks to maximize dynastic utility should
choose s to maximize her own wage income, Bt (1− s)ω (s, rt), taking the
rental rate per unit of effective capital as given. The rental rate will determine,
via (9), how much capital the individual will be allocated by her employer
as a reflection of her schooling choice. The individual’s education decision is
separable from her choice of consumption. The first-order condition for income
maximization at time t requires

(1− st)ωs (st, rt) = ω (st, rt) .

But using ω (s, rt) ≡ f [κ (s, rt) , s]−rtκ (s, rt) and noting (9), we have ωs (st, rt)
= fs [κ (st, rt) , st]. In other words, the marginal effect of schooling on the wage
reflects only the direct effect of schooling on per capita output; the extra output
that comes from a greater capital allocation to more highly educated workers,

4Equation (10) is the zero-profit condition, which is implied by the optimal choice of Lt in an equi-
librium with positive output.
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fkκs, just offsets the extra part of revenue that the firm must pay for that
capital, rκs. Consequently, we can rewrite the first-order condition as

(1− st) fs [κ (st, rt) , st] = f [κ (st, rt) , s]− fk [κ (st, rt) , st]κ (st, rt) .

Now replace f (k, s) by (1 − s)−bh
[
k(1− s)a+b

]
and use this representation

to calculate fs (·) and fk (·). After rearranging terms, this yields

(b− 1)h
[
κ (st, rt) (1− st)a+b

]
= (a+ b− 1)h′

[
κ (st, rt) (1− st)a+b

]
× κ (st, rt) (1− st)a+b

or

Eh
[
κ (st, rt) (1− st)a+b

]
=

b− 1

a+ b− 1
.

Since κ(st, rt) = kt = AtKt/BtLt and Lt = Nt(1−st) this expression is identical
to the first order condition for optimal schooling choice given in the paper.

Dynasties’ intertemporal optimization decisions yield the same consumption
and savings choices as in the planner’s problem. To see this, start from the no
arbitrage condition ιt = Rt/pt + gp − δ where ιt denotes the real interest rate
and pt = 1/qt is the equilibrium price of a unit of capital.5 Combining this
with rt = Rt/At gives

(11) rt =
1

qtAt
(ιt + gq + δ) .

Individuals’ optimal schooling choices imply κ(st, rt)(1 − st)a+b = z∗ for all
t ≥ t0 where z∗ takes the same value as in the planner’s problem. Therefore,
aggregate output is given by (3) with zt = z∗, just as in the planner’s problem.

Using f (k, s) = (1 − s)−bh
[
k(1− s)a+b

]
the first order condition for profit

maximization (9) yields

rt = (1− st)ah′(z∗).
Substituting this expression into the capital market clearing condition kt =
κ(st, rt) and using (11) implies the real interest rate satisfies

ιt = −gq − δ + qtA
θ
t

(
BtNt

Kt
z∗
)1−θ

h′(z∗).

5The no-arbitrage condition states that the real interest rate on a short-term bond equals the dividend
rate on a unit of physical capital plus the rate of capital gain on capital equipment (positive or negative),
minus depreciation.
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Combining this equation with the representative dynasty’s Euler equation ċt/ct =
(ιt − ρ)/η and using Eh(z∗) = θ and (3) gives

ċt
ct

= −ρ+ δ + gq
η

+
θqt
η

Yt(Kt)

Kt
.

Noting that this equation is identical to equation (6) we see that consumption
per capita satisfies the same differential equation as in the planner’s problem.
Since the capital accumulation equation is also the same in both cases we
conclude that consumption and the aggregate capital stock follow the same
equilibrium trajectory as in the planner’s problem.

Schooling Choice in the “Manager-Worker” Model

Recall that the production function can be written as

F̃
[
AtKD(s)a, BtLD(s)−b

]
= BtLD(s)−bh

[
kD(s)a+b

]
where s = M/L, k = AtK/BtL and D(s) = [1 + s/(1−m)]−1. Since WMt =
F̃M and WLt = F̃L, differentiating yields

WMt = (a+ b)BtD(st)
−bD

′(st)

D(st)
h
[
ktD(st)

a+b
]{
− b

a+ b
+ Eh

[
ktD(st)

a+b
]}

,

WLt = BtD(st)
−bh

[
ktD(st)

a+b
]

(
1− Eh

[
ktD(st)

a+b
]

+ (a+ b)
stD

′(st)

D(st)

{
b

a+ b
− Eh

[
ktD(st)

a+b
]})

.

Substituting these expressions into (1 − m)WMt = WLt and using D′(s) =
−D(s)2/(1−m) implies that, in equilibrium

Eh

[(
1 +

st
1−m

)−(a+b)

kt

]
=

b− 1

a+ b− 1
.

The fact that Eh(z) is declining in z ensures stability of the equilibrium.
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